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Abstract

In this paper we introduce a game semantics for System P, one of the
most studied axiomatic systems for non-monotonic reasoning, conditional
logic and belief revision. We prove soundness and completeness of the
game semantics with respect to the rules of System P, and show that an
inference is valid with respect to the game semantics if and only if it is
valid with respect to the standard order semantics of System P. Combining
these two results leads to a new completeness proof for System P with
respect to its order semantics. Our approach allows us to construct for
every inference either a concrete proof of the inference from the rules in
System P or a countermodel in the order semantics.

Our results rely on the notion of a witnessing set for an inference,
whose existence is a concise, necessary and sufficient condition for validity
of an inferences in System P.

We also introduce an infinitary variant of System P and use the game
semantics to show its completeness for the restricted class of well-founded
orders.

1 Introduction

System P is an inference system which formalizes core principles of non-monotonic
consequence relations as studied in artificial intelligence [8]. It is also the non-
nested fragment of a conditional logic developed in philosophy and linguistics
[10, 3, 15].

The standard semantics for System P is based on orders and evaluates a
non-monotonic inference or conditional by minimization in the order. A similar
order semantics is also used in the theory of AGM belief revision [5], which can
be recast in the setting of conditional logic [1].

In this paper we introduce a game semantics for the validity of inferences
in System P. The study of logical systems with game-theoretic methods was
initiated independently by Lorenzen and Lorenz [11] and Hintikka [6]. Hintikka’s
approach, known as game theoretic semantics, uses a game to establish the truth
of a formula in a given model. Lorenzen and Lorenz developed what is known
as dialogical logic. A dialogical game is a game in which two players debate
the validity of an inference in a logical system. The main difference between
dialogical games and game theoretic semantics is that Lorenzen and Lorenz
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adopt a proof-theoretical perspective whereas Hintikka presupposes a model
theory for the logic. A comparison of the two approaches can be found in [13].

The game semantics for System P developed in this paper is close to Lorenzen
and Lorenz’ dialogical games. For every inference in System P we define a game
in which the first player, we call her Hélöıse, attempts to argue for the validity of
the inference against attacks by the second player, whom we call Abélard. The
game differs from dialogical games in that Abélard successively chooses from a
given domain of objects or possible worlds, whose properties are already fixed.
This setup allows us to focus on the semantics of the conditional, since it is
already determined in advance whether an object or world instantiates a given
Boolean combination of properties.

As an illustration of the game semantics consider the following example:

Example 1. Assume that Hélöıse and Abélard have agreed that birds normally
fly. Hélöıse is now claiming that penguins normally fly. Abélard disputes this.
They are having the following dialogue:

Abélard: Look at Pingu! He is a penguin but he doesn’t fly.
Hélöıse: But Pingu is not a good example. He is a bird that doesn’t
fly and we have agreed that birds normally fly.

Abélard: Yes, but Pingu is a totally fine penguin. He is just a
strange bird. When we talk about birds we would rather think of a
sparrow, like Tweety. Tweety can fly.

Hélöıse: [has nothing to say]

In this dialogue Abélard tries to disprove the inference to the conclusion that
penguins usually fly by providing an object refuting this conclusion. Hélöıse tries
to circumvent Abélard’s alleged counterexample by pointing out that it does not
conform to an agreed upon premise. Abélard defends the counterexample by
showing that it is an exception to the premise. He does this by presenting a
different object which conforms to the premise and which he claims to be more
normal than the object provided before. Hélöıse loses since she does not have a
premise to dispute the normality of the second object given by Abélard.

The main result of this paper is a proof that for every inference the following
statements are equivalent:

1. The inference has a formal proof in System P.

2. The inference is valid in the order semantics.

3. The inference is valid in the game semantics.

4. There exists a witnessing set for the inference.

The notion of a witnessing set mentioned in statement 4 is introduced in this
paper. Checking for the existence of a witnessing set is a straightforward method
to determine the validity of an inference in System P.

We prove two different instances of the equivalence above, where the details
in the four statements vary. One instance is Theorem 23, which concerns the
standard System P and validity on the class of all orders and yields a new proof
of the completeness result for System P. This result has already been obtained
in [8] and for nested conditional logic in [3, 15]. Our approach is however more
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constructive in that we transform a winning strategy for Hélöıse into a concrete
proof in System P and a winning strategy for Abélard into a counterexample in
the order semantics. The other instance is Theorem 21, which on the syntactic
side concerns an extension of System P with an infinitary proof rule introduced
in this paper, and on the semantic side concerns validity on the class of well-
founded orders.

The paper is organized as follows. In Section 2 we review the basics of
System P and its order semantics. In Section 3 we introduce our game semantics
for System P and its infinitary variant. In Section 4 we show that winning
strategies for Abélard correspond to counterexamples in the order semantics.
In Section 5 we show that winning strategies for Hélöıse correspond to proofs
in System P. To obtain this result we introduce the notion of a witnessing set.
In section 6 we prove compactness for the version of the game semantics that
corresponds to provability in standard System P. In Section 7 we put the results
from the previous sections together to prove the main theorems of this paper.

This is an extended version of the paper which contains direct proofs of some
additional implications between the statements of our main theorem

2 System P

In this section we introduce the version of System P used in this paper and its
standard order semantics.

Let W be any set, whose elements we call possible worlds. One might also
think of the elements in W as objects, as for instance in Example 1. A condi-
tional over W is a pair (A,C) ∈ PW ×PW of subsets of W , written as A C.
We call A the antecedent and C the consequent of the conditional A C. A
world w verifies a conditional A C if w ∈ A ∩ C. A world w is a counterex-
ample to or falsifies A C if w ∈ A \ C = A ∩ Cc. We write A \ C for the set
difference of A and C and Cc = W \C for the complement of C relative to W .

Two sets Σ and Γ of conditionals over W are called an inference, written as
Σ/Γ. We call the elements of Σ the premises of the inference and the elements
of Γ the conclusions of the inference. The conclusions in Γ are understood
disjunctively. If Γ = {A C} is a singleton set we write Σ/A C instead
of Σ/Γ. We also call an inference Σ/Γ a single-conclusion inference if Γ is
a singleton set, and a multi-conclusion inference if we want to stress that Γ
need not be a singleton. In this paper we focus on single-conclusion inferences
because, as shown in Corollary 24, the completeness result for multi-conclusion
inferences follows from that for single-conclusion inferences.

Note the distinction between an inference Σ/A C between conditionals
and the non-monotonic inference A C captured by one conditional. Inferences
between conditionals have a classical monotonic semantics, whereas conditionals
have a non-monotonic semantics on orders.

System P consists of the rules given in Figure 1. A proof of an inference
Σ/Γ in system P is a tree which is built by recursive application of the rules of
system P , such that the root of the tree is a conclusion A C ∈ Γ and all leaves
which are not instances of (Id) are premises in Σ.

The presentation of system P in [8] includes an additional cut rule, which is
shown in Lemma 5.3 to be derivable from the other rules in the system. In the
setting of conditional logic an axiomatization analogous to that in Figure 1 was
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A A
(Id)

A C C ⊆ D
A D

(RW)
A C A D

A C ∩D
(And)

A B A C

A ∩B C
(CM)

A C B C

A ∪B C
(Or)

Figure 1: System P

given by [15].
The system P∞ is obtained from system P by adding the following infinitary

rule:
A Ci for all i ∈ I
A

⋂
{Ci | i ∈ I}

(And∞)

In our presentation of System P conditionals are over sets of worlds rather
than formulas. This simplifies the development of the game semantics in Sec-
tion 3 and dispenses us from including a rule for replacing logically equivalent
antecedents in conditionals, like the rule (Left Logical Equivalence) in [8]. One
can recast conditionals over formulas as conditionals over sets of worlds by tak-
ing the worlds to be all the maximal consistent sets of formulas, and identifying
a formula with the set of maximal consistent sets containing it.

The standard semantics for System P uses posets over sets of worlds, which
are reflexive, transitive and antisymmetric relations. All the results of this
paper are stated in terms of posets. We however never use antisymmetry, thus
our results could be generalized to preorders, which are transitive and reflexive
relations.

Let A C be a conditional over a set of worlds W and P = (W,≤) a poset
with carrier W . The conditional A C holds in P , written as P |= A C, if it
satisfies the following semantic clause:

A C iff for all w ∈ A there is a v ∈ A with v ≤ w
such that u ∈ C for all u ≤ v with u ∈ A.

In the context of conditional logic this semantic clause has been given in [3] and
is a generalization of the clause in [10, p. 48]. It was later introduced to the
setting of non-monotonic consequence relations by [2].

The semantic clause for conditionals is simpler on well-founded orders. A
poset P = (W,≤) is well-founded if there is no infinite chain w1 ≥ w2 ≥ . . .
where the inequalities are strict, meaning that w1 6≤ w2 6≤ . . . . One can show
that for a well-founded poset P = (W,≤) the above semantic clause is equivalent
to

A C iff w ∈ C for all w ∈ Min≤(A),

where Min≤(A) ⊆W is the set of minimal elements of A in ≤, that is

Min≤(A) = {m ∈ A | if w ≤ m then m ≤ w for all w ∈ A}.
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This semantic clause on well-founded orders is intuitive if one thinks of the order
such that w ≤ v if w is more normal than v. The conditional A C holds in
such an order if the most normal instances of A are instances of C.

An inference Σ/Γ, where premises and conclusions are over the set W , is
valid on posets if for every poset P = (U,≤) and function f : U → W there is
an A C ∈ Γ such that P |= f−1[A] f−1[C] whenever P |= f−1[B] f−1[D]
for all B D ∈ Σ.

An inference Σ/Γ, where premises and conclusions are over the set W , is
valid on well-founded posets if for every well-founded poset P = (U,≤) and
function f : U → W there is an A C ∈ Γ such that P |= f−1[A] f−1[C]
whenever P |= f−1[B] f−1[D] for all B D ∈ Σ.

In the above definitions of validity the carrier U of the poset P is possibly
distinct from the set of worlds W over which the relevant conditionals were
defined. The two sets U and W are related by the function f , which we call the
labeling function. We discuss why labeling functions are needed in Remark 5 at
the end of the section.

The following proposition states the soundness of System P for its order
semantics.

Proposition 2. If an inference is provable in system P then it is valid on
posets. If an inference is provable in system P∞ then it is valid on well-founded
posets.

Proof. A routine induction on the complexity of the proof trees.

We continue with a model-theoretic construction used in Section 7. This
construction is used in the proof of Lemma 3 in [9] and is also essential to the
complexity results of [4].

Proposition 3. Let I be an index set and take a poset Pi for every i ∈ I. Con-
sider the disjoint sum S =

∐
i∈I Pi which results from placing all the different

Pi next to each other without adding any order that is not already present in
some Pi. We write ιi : Wi → U for the inclusion map of Pi into S. Then it
holds for all A,C ⊆ U that

S |= A C iff Pi |= ι−1
i [A] ι−1

i [C] for all i ∈ I.

Proof. The proof is a routine argument unfolding the semantic clause of and
using the definition of the disjoint sum.

As observed in [4], one obtains the following disjunction property:

Corollary 4. A multi-conclusion inference Σ/Γ is valid on posets iff there exists
an A C ∈ Γ such that Σ/A C is valid on posets. The same property holds
for validity on well-founded posets.

Proof. First note that the direction from right-to-left follows immediately from
the definition of validity.

We prove the contrapositive of the left-to-right direction. Assume that Σ/A
C is not valid on posets for every A C ∈ Γ. Then there is for every A C ∈ Γ
a poset PA,C = (UA,C ,≤A,C) and a function fA,C : UA,C → W such that
PA,C |= f−1

A,C [B] f−1
A,C [D] for all B D ∈ Σ but PA,C 6|= f−1

A,C [A] f−1
A,C [C].
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We define P = (U,≤) to be the disjoint sum of all the PA,C for A C ∈ Γ
with inclusions ιA,C : UA,C → U . We let f : U → W be the unique function
such that f ◦ ιA,C = fA,C for all A C ∈ Γ. By Proposition 3 we know that for
all E,F ⊆W

P |= f−1[E] f−1[F ] iff PA,C |= f−1
A,C [E] f−1

A,C [F ] for all A C ∈ Γ. (1)

We show that P together with the labeling function f is a counterexample
to the validity of Σ/Γ on posets.

That P |= f−1[B] f−1[D] for all B D ∈ Σ follows from (1) because
PA,C |= f−1

A,C [B] f−1
A,C [D] for all B D ∈ Σ and A C ∈ Γ.

That P 6|= f−1[A] f−1[C] for all A C ∈ Γ follows from (1) because
PA,C 6|= f−1

A,C [A] f−1
A,C [C] for all A C ∈ Γ.

The same construction works in the case of well-founded posets because the
disjoint sum of well-founded posets is well-founded.

In the following remark we explain why labeling functions are needed in the
definition of validity:

Remark 5. The intuitive notion of validity for an inference with premises and
conclusions over a set W quantifies only over posets with carrier W . This notion
of validity is equivalent to the definition of validity given above when the labeling
function is required to be bijective. We sketch an argument showing that this
intuitive notion of validity cannot be complete with respect to provability in
system P .

We first show that we need to allow for labeling functions that are not
surjective. It is easy to see that if A ⊆W is not empty, then for every surjective
function f : U → W and every poset (U,≤) the conditional f−1[A] f−1[∅]
does not hold on (U,≤). Hence, the inference

A ∅ A 6= ∅
B D

is valid for the notion of validity with surjective labeling function. However, this
inference is not provable in system P; one can show this using the completeness
result of Theorem 23 for the notion of validity with arbitrary labeling functions.

We now argue that we also need to allow for labeling functions that are not
injective. An argument for this claim can be found at the end of Section 5.2
on page 193 of [8]. We show here how their reasoning applies to our context.
In particular, we provide a multi-conclusion inference that is valid according to
the notion of validity with injective labeling functions, but is not provable in
system P . Let W be the set {x, y, z}. Consider the following multi-conclusion
inference Σ/Γ with conditionals over W :

{x, y, z} {y, z}
{x} ∅ {x, y} {y} {x, z} {z}

One can show that this multi-conclusion inference is valid for the notion of
validity where the labeling function is required to be injective. It is however
not valid for labeling functions that are not injective. This is witnessed by the
poset P = (U,≤) where U is the set {x0, x1, y, z} and ≤ is as follows:
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x0

y

x1

z

The labeling function f : U →W is defined as x0, x1 7→ x, y 7→ y, z 7→ z. Hence
it follows by Corollary 24 that the inference Σ/Γ is not provable in system P .

One might wonder what rules have to be added to system P to recover
completeness with respect to validity with injective labeling functions. The
discussion of the coherence condition in Section II.4.1 of [15] suggests that this
requires expressive power that goes beyond the language of conditionals.

3 The game

In this section we introduce the semantic games for System P, along with the
needed game theoretic notions. We first give the definitions and then provide
intuitive explanations and examples.

For every inference Σ/A C we define two games, the non-well-founded
game GΣ

A,C and the well-founded game FΣ
A,C . The difference between GΣ

A,C and

FΣ
A,C is that the former is about the validity of the inference Σ/A C on posets

and its provability in system P , whereas the latter is about the validity of the
inference on well-founded posets and its provability in the infinitary system P∞.
The definitions of GΣ

A,C and FΣ
A,C are mostly the same. Thus we simultaneously

define both games for a fixed inference Σ/A C and mention the differences
between the two games explicitly.

One can consider the game for an inference Σ/A C to be a graph whose
nodes are the positions in the game and whose edges are the possible moves.
Additionally every position is labeled with the player, Hélöıse or Abélard, who
has to move at that position. A concise specification of this graph is given by
the following table:

Pos. Player Moves
(R,F ) Abélard {(w,F ) | w ∈ R \ F}
(w,F ) Hélöıse {(B ∩D,F ∪ (B \D)) | B D ∈ Σ, w ∈ B \D} ∪

{(A \ C,F ) | w ∈ A ∩ C}

The game contains two types of positions. The first type consists of all pairs
of the form (R,F ) ∈ PW × PW , where W is the set of worlds that contains
the antecedents and consequents of all conditionals in the inference Σ/A C.
For such a position (R,F ) we call R the required area and F the forbidden area
of the position. The second type of positions consists of all pairs of the form
(w,F ) ∈W×PW . For such a position (w,F ) we call w the world of the position
and F its forbidden area.

The positions of the form (R,F ) belong to Abélard, meaning that he moves
next if the game is at such a position. He can choose any world w ∈ R \F that
is in the required area and not in the forbidden area. In this case we say that
Abélard plays the move w. When Abélard chooses the world w the game moves
to the position (w,F ), where the forbidden area F remains the same.

The positions of the form (w,F ) belong to Hélöıse. She can play any premise
B D ∈ Σ which is such that w ∈ B \D. This moves the game to the position
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(B ∩D,F ∪ (B \D)). In the special case when w ∈ A ∩ C, where A C is the
conclusion of the inference Σ/A C that we are playing for, Hélöıse has one
special move at her disposal which moves the game to the position (A \ C,F ).
We call this move ? and we say that Hélöıse plays ? if she chooses this move.

The position (A \ C, ∅) is defined to be the starting position of the game.
A play s starting from a position p is a finite sequence s = p0, p1, . . . , pn of

positions of the game such that p0 = p and there is a move from pi to pi+1 for
every i ∈ {0, . . . , n − 1}. If we call s a play, without explicitly mentioning the
starting position, then s is is assumed to start from the starting position of the
game. For two plays s and t starting from the same position we write t ≤ s if s
is an initial segment of t. It is convenient in the setting of this paper to let ≤ be
the converse of the initial segment relation, and not the initial segment relation
itself. The set of all plays starting from some position is a possibly infinite tree
ordered by the converse initial segment relation.

A match starting from a position p is a maximal, possibly infinite, branch
in the tree of all plays starting from p. If the starting position p is omitted we
again assume it to be the starting position of the game.

Note that a finite match is just a play p0, . . . , pn such that there is no move
in the game leading from pn to any other position. A player gets stuck in the
finite match p0, . . . , pn if she or he has to move in the position pn. A finite
match is won by the player that does not get stuck.

There is no natural way to define the winner of infinite matches. In the game
GΣ
A,C the winner of all infinite matches is stipulated to be Abélard. In the game

FΣ
A,C the winner of all infinite matches is stipulated to be Hélöıse. The winning

condition for infinite matches is the only difference between the definitions of
GΣ
A,C and FΣ

A,C .
A strategy S for some player starting from position p is a set of plays starting

from p such that:

1. S is closed under initial segments of plays.

2. Whenever a play sp ending in a position p belonging to the player is in S
then there is a unique position q reachable from p by a move of the player
such that spq is also in S.

3. Whenever a play sp ending in a position p of the opponent is in S then all
plays spq such that there is some move of the opponent from p to q are
also in S.

If we do not mention the position from which a strategy starts then it should
be understood as starting from the starting position of the game.

A strategy for some player starting from some position p is a recipe which
tells the player how to continue playing once the game is in position p. The
second condition above guarantees that the strategy determines one unique
move for the player in every match starting from p in which she or he plays
according to the strategy. The third condition guarantees that the strategy
covers all possible moves of the opponent.

A strategy S for some player starting from p is a subtree of the tree of all
plays starting from p. This subtree is somewhat peculiar since all the nodes
ending with a position belonging to the player to whom the strategy belongs
have only one child. For this reason we define the tree T = (L,≤) determined
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by some strategy S for some player starting from some position to consist of all
plays in S that end in a position that belongs to the opponent, ordered by the
converse initial segment relation.

One can check that given a strategy S for Hélöıse starting from a position p
and a strategy S′ for Abélard starting from p there is a unique match starting
from p in which Hélöıse plays according to S and Abélard plays according to
S′. This match is the unique branch in the subtree of the tree of all plays that
corresponds to the intersection of S and S′.

A strategy S for a player starting from p is a winning strategy if, for every
strategy S′ for the opponent starting from p, the unique match in which the
player plays according to S and the opponent plays according to S′ is winning
for the player. Less formally, a strategy for some player is winning if the player
wins every match in which he or she plays according to the strategy.

An inference Σ/A C is defined to be valid in the non-well-founded game
semantics if Hélöıse has a winning strategy in the game GΣ

A,C . The inference is
defined to be valid in the well-founded game semantics if Hélöıse has a winning
strategy in the game FΣ

A,C .
We make use of the fact that winning strategies for some player starting at

a given position can be glued together from winning strategies for that player
starting from later positions. Assume the position p belongs to the player and
there is a move from p to a position q such that the player has a winning
strategy S starting from q. Then there is a new winning strategy S′ for the
player starting from p where the player first moves from p to the position q
and then continues playing according to the winning strategy S. We can do a
similar thing if the position p belongs to the opponent. Assume that for every
move of the opponent leading from p to a position q there is a winning strategy
Sq for the player starting from q. Then there is a new winning strategy S′ for
the player starting from p where she or he waits for the opponent to move to a
position q and from then on uses the winning strategy Sq.

The games GΣ
A,C and FΣ

A,C enjoy the property of determinacy. Determinacy
means that for any such game exactly one of the players has a winning strategy.
The determinacy of GΣ

A,C and FΣ
A,C follows from the Gale-Stewart Theorem, a

proof of which can be found for instance in [14, sec. 3.5].
We now provide an intuitive explanation of the rules of the game. Consider

the game GΣ
A,C or FΣ

A,C for an inference Σ/A C. The conditionals in Σ are
accepted by both players in advance. Abélard aims to show that conclusion
A C does not follow from Σ by giving a counterexample. Hélöıse disputes
the relevance of the counterexample by forcing Abélard to admit that there is
a more relevant world that verifies the conclusion of the inference. To do so
she chooses premises in Σ forcing Abélard to come up with further worlds that
verify the chosen premises.

The game starts at position (A \ C, ∅) which means that in his first move
Abélard has to provide a counterexample to the conclusion A C.

After Abélard has chosen some world w the match is at position (w,F ).
Hélöıse can now show that this world is not relevant by finding a premise B
D ∈ Σ that is falsified by w. This moves the match to the position (B ∩D,F ∪
(B \ D)). Abélard is now required to come up with a more relevant world
that verifies the premise B D. Moreover the forbidden area grows such that
Abélard is not allowed to choose counterexamples to B D anymore.

If Abélard moves to a position (w,F ) such that w verifies the conclusion
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A C then Hélöıse can play ?. This moves the game to (A\C,F ) forcing Abélard
to restart with a new counterexample to the conclusion. It now becomes more
difficult for Abélard to find the required worlds because the forbidden area F
has grown to include all counterexamples to premises that Hélöıse played before.

Let us consider again the dialogue from Example 1 in the introduction.
Formally this dialogue corresponds to the game for the inference B F/P F
such that there are at least two worlds p, t ∈ W with p, t ∈ B, p ∈ P , t /∈ P ,
p /∈ F end t ∈ F . The game starts at the position (P \ F, ∅). This means that
Abélard has to give a counterexample to the conditional P F . He chooses p
moving the game to the position (p, ∅). Hélöıse tries to neutralize this alleged
counterexample by pointing out that it does not conform to the premise B F .
So the match moves to the position (B ∩ F,B \ F ). Now Abélard has to come
up with an object that is more normal than p in that it verifies B F . He
chooses t moving the game to (t, B \F ). His counterexample p is thus left intact
because t is not in P and hence does not verify P F . Moreover there is no
premise that is falsified by t, which means that Hélöıse cannot argue that t is
not normal in some respect. Hence Abélard wins the match.

We now consider two examples of games that belong to more abstract infer-
ences. It is quite helpful to illustrate the dialectics of simple games by means
of Venn diagrams.

Example 6. Consider the following cautious cut rule which is part of the ax-
iomatization of System P in [8]:

A B A ∩B C

A C
(CCut)

Take A,B,C ⊆ W to be any subsets of some set of worlds W . Hélöıse has a
winning strategy in the non-well-founded game for this inference. The strategy
can be described as follows. Hélöıse’s move only depends on the last world w
that Abélard has played. If w ∈ A ∩ Bc then Hélöıse plays the first premise
A B. If w ∈ A ∩B ∩ Cc then she replies with the second premise A ∩B C.
If w ∈ A∩B ∩C then Hélöıse replies with ?. We do not need to specify a reply
for the case where w ∈ Ac because it can be seen to never arise if Hélöıse plays
the above strategy. One can check that by playing this strategy Hélöıse does
not get stuck and no infinite match can arise. Hence it is a winning strategy for
Hélöıse.

The following classical cut rule is however not valid in general:

A B B C

A C
(Cut)

Assuming that there are worlds w0 ∈ A ∩ B ∩ Cc and w1 ∈ Ac ∩ B ∩ C we
can show that Abélard has a winning strategy in the non-well-founded game for
(Cut). In the starting position (A \ C, ∅) Abélard plays w0. Hélöıse can then
only reply with the second premise B C moving the match to the position
(B ∩ C,B \ C). Then Abélard picks w1 and Hélöıse gets stuck. Note that the
absence of A in the antecedent of the second premise is crucial, since it allows
Abélard to escape to a world not in A.

Example 7. This last example demonstrates the difference between the non-
well-founded and the well-founded game. Consider the following inference where
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Ai for all i ∈ I and C are subsets of any set of worlds W :

Ai C for all i ∈ I⋃
{Ai | i ∈ I} C

(Or∞)

Hélöıse has a winning strategy in the well-founded game for this inference.
Whenever Abélard has chosen a world in Ai for some i ∈ I then Hélöıse plays
the premise Ai C. It is guaranteed that all worlds picked by Abélard are in Ai

for some i ∈ I. This holds at the beginning of the match because the required
area of the starting position is

⋃
{Ai | i ∈ I}. It remains true later because after

Hélöıse has played Ai C Abélard needs to pick a world in Ai∩C and after she
has played ? Abélard needs to pick a world in

⋃
{Ai | i ∈ I} \ C. Playing this

strategy Hélöıse never gets stuck. So this is a winning strategy for her in the
well-founded game for the inference because by definition she wins all infinite
matches.

Hélöıse does not necessarily have a winning strategy in the non-well-founded
game associated to (Or∞). To see this consider the following instance of the
rule over the set W = ω ∪ {∞} where ω is the set of all natural numbers and
∞ is distinct from all elements in ω:

{n,∞} {∞} for all n ∈ ω
ω ∪ {∞} {∞}

Abélard has a winning strategy in this game because he can enforce an infinite
match. If the required area equals ω then Abélard picks the smallest n ∈ ω
that is not in the forbidden area. Such a world exists because the forbidden
area is the finite set containing all k such that Hélöıse has played {k,∞} {∞}
before. If the required area is {∞} then Abélard plays ∞ which is never in the
forbidden area. In this way Abélard never gets stuck because he has a move for
all of his positions. In the starting position and after Hélöıse has played ? the
required area is ω. After Hélöıse has played one of the premises the required
area is {∞}. A match played according to this strategy is either infinite or a
match where Hélöıse gets stuck. So it is a winning strategy for Abélard in the
non-well-founded game.

4 Abélard orders

In this section we show that a winning strategy for Abélard in the game for
some inference yields a countermodel to the inference in the order semantics.

Proposition 8. If Abélard has a winning strategy in GΣ
A,C then the inference

Σ/A C is not valid on posets. If Abélard has a winning strategy in FΣ
A,C then

the inference Σ/A C is not valid on well-founded posets.

Proof. Assume that Abélard has a winning strategy in GΣ
A,C . We show that the

tree T = (L,≤) determined by Abélard’s winning strategy is a countermodel
to the validity of the inference Σ/A C. The labeling function f : L → W is
defined to map a play s, (w,F ) ending with a position (w,F ) for Hélöıse to the
world w ∈W previously picked by Abélard.

We have to show that T |= f−1[B] f−1[D] for all B D ∈ Σ and that
T 6|= f−1[A] f−1[C]. To show the former take any B D ∈ Σ and consider

11



s ∈ L such that s ∈ f−1[B]. We must find a t ≤ s such t ∈ f−1[B] and for
all u ≤ t with u ∈ f−1[B] it holds that u ∈ f−1[D]. We distinguish cases on
whether s ∈ f−1[D].

First assume that s /∈ f−1[D]. Let w = f(s) be the world from the last
position (w,F ) in the play s. Because s ∈ f−1[B] and by assumption s /∈ f−1[D]
it follows that w ∈ B \ D. Then Hélöıse can play the premise B D moving
the game to the position (B ∩ D,F ∪ (B \ D)). Abélard replies with some
world v ∈ B ∩ D moving to the position (v, F ∪ (B \ D)). This gives a play
t = s, (B∩D,F ∪(B\D)), (v, F ∪(B\D)) which is in L because the last position
is a position for Hélöıse. It is the case that t ∈ f−1[B] because f(t) = v. It
remains to be shown that for any u ≤ t, if u ∈ f−1[B] then u ∈ f−1[D]. Take
any such u whose last position is (f(u), F ′). Since u ≤ t, the position (f(u), F ′)
either occurs later in the match than (v, F ∪(B \D)) or it is equal to it. Since in
a match the forbidden area never decreases, we have that F ∪ (B \D) ⊆ F ′, and
therefore B \ D ⊆ F ′. Because Abélard picked f(u) when the forbidden area
was F ′ it follows that f(u) /∈ F ′ and thus f(u) /∈ B \D. Hence if u ∈ f−1[B]
then also u ∈ f−1[D].

Consider now the case when s ∈ f−1[D]. We distinguish two further cases.
If r ∈ f−1[D] for all r ≤ s with r ∈ f−1[B] then we can take s to be the
witnessing t to satisfy the semantic clause. If on the other hand there is some
r ≤ s with r ∈ f−1[B] but r /∈ f−1[D] then we can run the argument from
the previous paragraph with r for s to find the witnessing t ≤ r ≤ s such that
t ∈ f−1[B] and for all u ≤ t if u ∈ f−1[B] then u ∈ f−1[D].

It remains to be shown that T 6|= f−1[A] f−1[C]. We must find an s ∈
f−1[A] such that for every t ≤ s with t ∈ f−1[A] there exists a u ≤ t with
u ∈ f−1[A] but u /∈ f−1[C]. First note that f−1[A] 6= ∅, otherwise Abélard
would get stuck in the initial position (A \C, ∅). Consider then any s ∈ f−1[A].
Take an arbitrary t ≤ s such that t ∈ f−1[A]. If t /∈ f−1[C] then we can take
u = t. If t ∈ f−1[C] then t ends with the position (v, F ) where v ∈ A ∩ C.
Hélöıse can reply to this position with ?, to which Abélard’s winning strategy
must supply a world z ∈ A \ C. This moves the game to a position (z, F ), and
hence we have a play u ≤ t ending with position (z, F ). Thus f(u) ∈ A\C, and
so u ∈ f−1[A] but u /∈ f−1[C].

Example 9. Consider the following instance of (Or∞) from Example 7:

{n,∞} {∞} for all n ∈ ω
ω ∪ {∞} {∞}

In Example 7 we show that Abélard has a winning strategy in the non-well-
founded game for this inference. The construction from the proof of Proposi-
tion 8 transforms this winning strategy into a non-well-founded poset that is a
counterexample to the inference above. This poset is displayed in Figure 2.

The converse of Proposition 8 is a consequence of Theorems 21 and 23. One
can also show it by a direct proof. To do so we first need a technical Lemma.

Lemma 10. Consider a function f : U →W and a set of conditionals Σ and a
conditional A C with antecedents and consequents from PW . If Abélard has a
winning strategy in the game GΓ

f−1[A],f−1[C], where Γ = {f−1[B] f−1[C] | B
D ∈ Σ}, then he also has a winning strategy in GΣ

A,C . The same holds for the

game FΣ
A,C .

12



(1, ∅)

(∞, {1})

(2, {1})

(∞, {1, 2})

(3, {1, 2})

...

{1,∞} {∞}

?

{2,∞} {∞}

?

Figure 2: Counterexample to (Or∞)

Proof. Assume Abélard has a winning strategy in GΓ
f−1[A],f−1[C]. We show that

Abélard wins in GΣ
A,C by playing a shadow match in GΓ

f−1[A],f−1[C]. We maintain

the constraint that whenever the actual match is in a position (R,F ) for some
R,F ⊆ W then the shadow match is in the position (f−1[R], f−1[F ]). In the
starting position this is clearly the case.

If the actual match is in a position (R,F ) and the shadow match is in
(f−1[R], f−1[F ]) then Abélard has a reply u ∈ f−1[R]\ f−1[F ] according to the
winning strategy for GΓ

f−1[A],f−1[C]. Hence Abélard can play f(u) ∈ R\F in the
actual match.

Now consider the case where the actual match is in position (f(u), F ) and
the shadow match is in (u, f−1[F ]). In the actual match Hélöıse then replies
with a premise B D ∈ Σ or with ?.

If Hélöıse plays a premise B D ∈ Σ then f(u) ∈ B \ D. So also u ∈
f−1[B]\f−1[D] and we can let Hélöıse play f−1[B] f−1[D] ∈ Γ in the shadow
match. This moves the shadow match to the position (f−1[B]∩f−1[D], f−1[F ]∪
(f−1[B]\f−1[D])) which maintains the constraint because the actual match goes
into (B ∩D,F ∪ (B \D)) and f−1[·] preserves Boolean operations on sets.

If Hélöıse plays ? then f(u) ∈ A ∩ C. So also u ∈ f−1[A] ∩ f−1[C] and we
can let Hélöıse play ? in the shadow match. This moves the shadow match to
the position (f−1[A] \ f−1[C], f−1[F ]) which maintains the constraint because
the actual match goes into (A \ C,F ) and f−1[·] preserves Boolean operations
on sets.

By following the outlined procedure Abélard is guaranteed to not get stuck
in the actual match. This suffices to show that Abélard has a winning strategy
in the game GΣ

A,C because he wins all infinite matches.

The same construction works for the game FΣ
A,C , however here infinite

matches are won by Hélöıse. But infinite matches never arise, otherwise the
shadow match would also be infinite contradicting the assumption that Abélard
is playing a winning strategy there.
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We can now prove the converse of Proposition 8.

Proposition 11. Assume an inference Σ/A C is not valid on posets. Then
Abélard has a winning strategy in the game GΣ

A,C . If the inference Σ/A C is

not valid on well-founded posets then Abélard has a winning strategy in FΣ
A,C .

Proof. Since we assume that the inference Σ/A C is not valid on posets there
is a poset P = (U,≤) and a function f : U →W such that P |= f−1[B] f−1[D]
for all B D ∈ Σ and P 6|= f−1[A] f−1[C]. We use P to construct a winning
strategy for Abélard in GΣ

A,C .
We first argue that without loss of generality we can assume that f is the

identity function. So it is sufficient to construct a winning strategy for Abélard
in the game GΣ

A,C from a poset P = (W,≤) such that P |= B D for all
B D ∈ Σ and P 6|= A C. If f is not the identity function we can use the same
construction to obtain a winning strategy for Abélard in the game GΓ

f−1[A],f−1[C]

where Γ = {f−1[B] f−1[D] | B D ∈ Σ} and then use Lemma 10 to obtain
the desired winning strategy for GΣ

A,C .
The idea of the construction is to let Abélard pick worlds in U such that

the worlds he plays are always smaller in P than the worlds that he has played
so far in the match. Abélard keeps being able to choose worlds that satisfy the
constraints of the game because we assumed that P is a countermodel to the
inference Σ/A C.

The game starts in the position (A\C, ∅). To determine Abélard’s first move
we use that P 6|= A C. Hence there is a world w ∈ A such that for all v ≤ w
with v ∈ A there is a z ≤ v such z ∈ A \ C. We can assume that w ∈ A \ C,
because if it is not then, since w ≤ w, we know that there is a w′ ≤ w with
w′ ∈ A \C which itself satisfies the above condition on W . Abélard’s first move
is then world w ∈ A \ C. Since from now on we let Abélard choose only worlds
v ≤ w it will remain the case that for any such v ∈ A there is a z ≤ v with
z ∈ A \ C. We also maintain the constraint that the downset {z | z ≤ v} of a
world v that Abélard has played is disjoint from the forbidden area F . In the
first move this is the case because F = ∅.

Now assume that the game is in a position (v, F ). Hélöıse can either play a
premise B D or ?.

First consider the case where Hélöıse plays a premise B D. This means
that v ∈ B \D. Because P |= B D it follows that there is a z ∈ B such that
x ∈ D for all x ≤ z with x ∈ B. Abélard replies with this world z. To see that
this is a possible move we need to show that z ∈ B ∩D and z /∈ F ∪ (B \D).
The former holds because z ∈ B and z ≤ z so also z ∈ D. So clearly z /∈ B \D
thus we only need to show that z /∈ F . This holds because z is in the downset of
the world v that Abélard has played before which by the constraint is disjoint
from F . The constraint is preserved for the increased forbidden area because
any x ≤ z is not in B \D since if it is in B then it is in also in D.

Consider then the case where Hélöıse plays ?. This means that the game
is in a position (v, F ) where v ∈ A ∩ C. Since v ≤ w, where w is the world
picked by Abélard in the beginning, there is a z ≤ v such that z ∈ A\C. Hence
Abélard can play z as his next move. Our constraint is preserved because the
forbidden area does not change and z ≤ v.

If Abélard follows this strategy then he never gets stuck, which suffices for
winning all matches in the game GΣ

A,C .
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We use the same strategy for the game FΓ
A,C . An additional argument is

needed to show that under the assumption that P is well-founded no infinite
match arises and hence the strategy is indeed winning. Assume for a contradic-
tion that an infinite match is played according to the strategy outlined above.
Because Abélard always chooses a world which is below the worlds that he has
picked before his choices form an infinite descending chain w0 ≥ w1 ≥ w2 ≥ . . .
in P . We show that wi � wi+2 for every i ∈ ω. So the chain w0 ≥ w1 ≥ w2 ≥ . . .
contains an infinite subchain in which none of the inequalities can be reversed,
yielding a contradiction with the well-foundedness of P .

So consider a world wi in the chain. We distinguish cases depending on how
Hélöıse replied to the Abélard’s move wi. If she played a premise B D then
wi ∈ B \ D. The next choice by Abélard is world wi+1 which by definition is
such that wi+1 ∈ B and x ∈ D for all x ≤ wi+1 with x ∈ B. Hence wi � wi+1

because otherwise one obtains a contradiction with wi for x. In the other case
Hélöıse played ?. Then Abélard’s reply wi+1 is in A \ C. So the next move by
Hélöıse can not be ? and hence is a premise B D. By the argument from the
previous case we then have wi+1 � wi+2 which entails wi � wi+2.

5 Hélöıse proves

In this section we prove that if Hélöıse has a winning strategy in the game for
some inference then the inference is provable in System P. An intermediate step
of the proof is to show the existence of a witnessing set for the inference, which
is defined as follows:

Definition 12. Let Γ be a set of conditionals. The abnormality area U(Γ) ⊆W
of Γ is defined as:

U(Γ) =
⋃
{B \D | B D ∈ Γ}.

The set Γ is a witnessing set for an inference Σ/A C if Γ ⊆ Σ and the
following conditions are satisfied:

1. A ⊆ C ∪ U(Γ).

2. B ∩D ⊆ (A ∩ C) ∪ U(Γ) for all B D ∈ Γ.

Proposition 13. If Hélöıse has a winning strategy in the game FΣ
A,C then the

inference Σ/A C has a witnessing set.

Proof. Assume that Hélöıse has a winning strategy in the game FΣ
A,C . We

define the witnessing set Γ ⊆ Σ as the set of all premises that Hélöıse uses in
some match played according to her winning strategy. We check that the two
conditions from Definition 12 are satisfied.

For the first condition consider any w ∈ A. If w ∈ C ⊆ C ∪ U(Γ) we
are done. So we can assume that w /∈ C. Since the game starts in position
(A \ C, ∅) Abélard can then move to (w, ∅) in his first move. Hélöıse’s winning
strategy provides her with a reply to this move. The reply cannot be ? because
w /∈ A ∩ C. Hence she replies with a premise B D ∈ Γ from which it follows
that w ∈ B \D ⊆ U(Γ) ⊆ C ∪ U(Γ).

For the second condition consider any B D ∈ Γ. By definition of Γ there is
a match played according to Hélöıse’s winning strategy in which she plays the
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premise B D. This moves the match to a position of the form (B ∩ D,F ),
where F ⊆ U(Γ), because the forbidden area F at a position is the union of
the B′ \ D′ of all the premises B′ D′ that Hélöıse has played so far in the
match. Now consider a w ∈ B ∩ D and distinguish cases on whether w ∈ F .
If w ∈ F then also w ∈ U(Γ). Otherwise Abélard can reply with w at the
position (B∩D,F ). Hélöıse’s winning strategy provides her with a reply to this
move. If she plays ? then w ∈ A ∩ C. If she plays a premise B D ∈ Γ then
w ∈ B \D ⊆ U(Γ).

Proposition 14. If the inference Σ/A C has a witnessing set then Hélöıse
has a winning strategy in the game FΣ

A,C .

Proof. Assume we have a witnessing set Γ ⊆ Σ for the inference Σ/A C. We
show that Hélöıse has a reply for any move by Abélard using only premises from
Γ. It follows that she does not get stuck and hence she has a winning strategy
because in FΣ

A,C she wins infinite matches.
Consider any position of the form (w,F ) where Hélöıse must reply. This

position results from Abélard playing either w ∈ A\C at the starting position or
in response to a previous ? move by Hélöıse, or w ∈ B∩D in response to Hélöıse’s
previous move B D ∈ Γ. In both cases we can show that w ∈ (A∩C)∪U(Γ).
In the first cases this follows form the first condition on witnessing sets, in the
third case it follows from the second condition on witnessing sets. Hence either
w ∈ A ∩ C or w ∈ B′ \ D′ for some B′ D′ ∈ Γ. In the former case Hélöıse
replies with ?, in the latter she replies with B′ D′ ∈ Γ.

We now show how one can obtain a formal proof of an inference in System P
from a witnessing set for this inference.

Proposition 15. If the inference Σ/A C has a witnessing set then it is
provable in system P∞. If the inference Σ/A C has a finite witnessing set
then it is provable in system P .

Proof. We first show that a witnessing set yields a proof in system P∞. Thus
assume that there is a witnessing set Γ ⊆ Σ for the inference Σ/A C. We
index the elements in Γ such that Γ = {Bi Di | i ∈ I} ⊆ Σ for some set I.
That Γ is a witnessing set means that:

1. A ⊆ C ∪ U(Γ).

2. Bi ∩Di ⊆ (A ∩ C) ∪ U(Γ) for all i ∈ I.

We need two consequences of these inclusions.
The first consequence is⋃

i∈I
Bi ∩

⋂
i∈I

(Bc
i ∪Di) ⊆ A ∩ C. (2)

To see this pick any w ∈
⋃

i∈I Bi ∩
⋂

i∈I (Bc
i ∪Di). Since w ∈

⋃
i∈I Bi there

exists an j ∈ I such that w ∈ Bj . Then also w ∈ Dj because w ∈
⋂

i∈I (Bc
i ∪Di)

and hence w ∈ Bc
j ∪Dj . Thus w ∈ Bj ∩Dj ⊆ (A ∩ C) ∪ U(Γ) by condition 2.

It follows that w ∈ A ∩ C because w ∈
⋂

i∈I (Bc
i ∪Di) = U(Γ)c.
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The second consequence is(
C ∪

⋃
i∈I

Bi

)
∩A = A. (3)

The ⊆-inclusion is obvious. For the other inclusion we need that A ⊆ C ∪⋃
i∈I Bi. This holds because condition 1 is that A ⊆ C ∪ U(Γ) and one can

verify that U(Γ) ⊆
⋃

i∈I Bi.
We now construct the proof of Σ/A C. For every j ∈ I we have the

following proof:

Bj Dj
(RW)

Bj Bc
j ∪Dj

(Id)⋃
i∈I Bi ∩Bc

j

⋃
i∈I Bi ∩Bc

j
(RW)⋃

i∈I Bi ∩Bc
j Bc

j ∪Dj
(Or)

Bj ∪
(⋃

i∈I Bi ∩Bc
j

)
Bc

j ∪Dj

One can check that Bj ∪
(⋃

i∈I Bi ∩Bc
j

)
=
⋃

i∈I Bi. So we have for every j ∈ I
a proof of

⋃
i∈I Bi Bc

j ∪Dj from premises in Σ. We continue as follows:

(Id)⋃
i∈I Bi

⋃
i∈I Bi

{⋃
i∈I Bi Bc

j ∪Dj | j ∈ I
}

(And∞)⋃
i∈I Bi

⋂
j∈I
(
Bc

j ∪Dj

)
(And)⋃

i∈I Bi

⋃
i∈I Bi ∩

⋂
j∈I
(
Bc

j ∪Dj

)
(RW)⋃

i∈I Bi A ∩ C

The last application of (RW) is possible because of (2). We use this proof twice
to continue as follows:

(Id)
C ∩A C ∩A (RW)
C ∩A C

⋃
i∈I Bi A ∩ C

(RW)⋃
i∈I Bi A

⋃
i∈I Bi A ∩ C

(RW)⋃
i∈I Bi C

(CM)⋃
i∈I Bi ∩A C

(Or)(
C ∪

⋃
i∈I Bi

)
∩A C

In the last application of (Or) we use the distributivity of ∩ over ∪. By (3) we
now have a proof of A C from premises in Σ.

The same construction can be used to show the second claim. If Σ is finite
then so is the index set I, which allows us to replace the application of (And∞)
above by a finite chain of applications of (And).

Example 16. Consider again the following cautious cut rule:

A B A ∩B C

A C
(CCut)

Using Propositions 13 and 15 we can construct a proof of (CCut) in system P
from the winning strategy of Example 6. Both premises A C and A ∧ B C
are played by Hélöıse in some match according to this winning strategy. From
the proof of Proposition 13 it follows that together they are a witnessing set
for the inference (CCut). We can apply the proof of Proposition 15 to this
witnessing set to obtain a proof of the inference in system P . After deleting
some obvious redundancies we obtain a proof of (CCut) starting as follows:
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A ∩B C (RW)
A ∩B (A ∩B)c ∪ C

(Id)
A ∩ (A ∩B)c A ∩ (A ∩B)c

(RW)
A ∩ (A ∩B)c (A ∩B)c ∪ C

(Or)
A (A ∩B)c ∪ C

The above is the rightmost leaf of the following continuation:

(Id)
A A

A B (RW)
A Ac ∪B A (A ∩B)c ∪ C

(And)
A (Ac ∪B) ∩ ((A ∩B)c ∪ C)

(And)
A A ∩ (Ac ∪B) ∩ ((A ∩B)c ∪ C)

(RW)
A C

Proposition 17. If an inference Σ/A C is provable in system P∞ then it has
a witnessing set. If an inference Σ/A C is provable in system P then it has a
finite witnessing set.

Proof. We prove the first claim by an induction on the complexity of the proof
of Σ/A C in system P∞.

In the base case either A C ∈ Σ, or A = C and A C is obtained by (Id).
If A C ∈ Σ then {A C} is a witnessing set. If A = C then the empty set is
a witnessing set.

As the first inductive case assume that a conditional X Z was obtained
by (RW) from an proof of Σ/X Y with Y ⊆ Z. By induction hypothesis we
have a Γ ⊆ Σ such that X ⊆ Y ∪ U(Γ) and B ∩ D ⊆ (X ∩ Y ) ∪ U(Γ) for all
B D ∈ Γ. Since Y ⊆ Z this Γ also satisfies these conditions with Z in place
of Y .

In the remaining induction cases we implicitly make use of the fact that
the abnormality area of an arbitrary union of sets of conditionals is equal to
the union of the abnormality areas of the individual sets of conditionals. This
follows immediately from Definition 12.

Now consider the case where X
⋂

i∈I Yi is obtained by (And∞) from proofs
of Σ/X Yi for every i ∈ I. By induction hypothesis there is for every i ∈ I
a Γi ⊆ Σ such that X ⊆ Yi ∪ U(Γi) and B ∩ D ⊆ (X ∩ Yi) ∪ U(Γi) for all
B D ∈ Γi. We show that Γ =

⋃
i∈I Γi is a witnessing set for the inference

Σ/X
⋂

i∈I Yi. The first condition is that X ⊆
⋂

i∈I Yi ∪ U(Γ). So take any
w ∈ X. Since then w ∈ Yi ∪ U(Γi) for any i ∈ I it suffices to distinguish the
cases w ∈ U(Γi) for at least one i, or w ∈ Yi for all i. In the former case
w ∈

⋃
i∈I U(Γi) = U(

⋃
i∈I Γi) = U(Γ). In the latter case w ∈

⋂
i∈I Yi. The

second condition is that B ∩ D ⊆ (X ∩
⋂

i∈I Yi) ∪ U(Γ) for any B D ∈ Γ.
Consider any w ∈ B ∩D ⊆ (X ∩ Yi)∪U(Γi). If w ∈ U(Γi) we are done because
U(Γi) ⊆ U(Γ). Otherwise w ∈ X. Then by the first condition proven above we
have that w ∈

⋂
i∈I Yi ∪ U(Γ) and hence w ∈ (X ∩

⋂
i∈I Yi) ∪ U(Γ).

The case for (And) is an instance of the case for (And∞).
Next consider the case where X ∩Y Z is obtained by (CM) from proofs of

Σ/X Y and Σ/X Z. By the induction hypothesis we have witnessing sets
Γ,∆ ⊆ Σ such that X ⊆ Y ∪ U(Γ), X ⊆ Z ∪ U(∆), B ∩D ⊆ (X ∩ Y ) ∪ U(Γ)
for all B D ∈ Γ and B ∩ D ⊆ (X ∩ Z) ∪ U(∆) for all B D ∈ ∆. We
show that Γ ∪ ∆ is a witnessing set for the inference Σ/X ∩ Y Z. The
first condition to be checked is X ∩ Y ⊆ Z ∪ U(Γ ∪ ∆). This holds because
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X ∩ Y ⊆ X ⊆ Z ∪ U(∆) ⊆ Z ∪ U(Γ ∪ ∆) where the last inclusion follows
because U preserves unions. It remains to verify the second condition, that
B ∩ D ⊆ (X ∩ Y ∩ Z) ∪ U(Γ ∪ ∆) for any B D ∈ Γ ∪ ∆. We consider the
case where B D ∈ Γ. A similar arguments holds for B D ∈ ∆. So take any
w ∈ B ∩D. We need to show that w ∈ (X ∩Y ∩Z)∪U(Γ∪∆). By assumption
we have that B ∩D ⊆ (X ∩ Y )∪U(Γ), so w ∈ (X ∩ Y )∪U(Γ). If w ∈ U(Γ) we
are done because U(Γ) ⊆ U(Γ∪∆). Otherwise w ∈ X ∩Y from which it follows
with the assumption that X ⊆ Z ∪ U(∆) that w ∈ Z ∪ U(∆). If w ∈ U(∆) we
are done because U(∆) ⊆ U(Γ∪∆). Otherwise w ∈ Z and hence w ∈ X∩Y ∩Z,
so we are done.

Lastly, we have the case where X ∪ Y Z is obtained by (Or) from proofs
of Σ/X Z and Σ/Y Z. The induction hypothesis gives us witnessing sets
Γ,∆ ⊆ Σ satisfying X ⊆ Z ∪U(Γ), Y ⊆ Z ∪U(∆), B ∩D ⊆ (X ∩Z)∪U(Γ) for
all B D ∈ Γ and B ∩D ⊆ (Y ∩ Z) ∪ U(∆) for all B D ∈ ∆. We show that
Γ ∪ ∆ is a witnessing set for the inference Σ/X ∪ Y Z. The first condition
X ∪ Y ⊆ Z ∪ U(∆ ∪ Γ) holds because of the assumptions X ⊆ Z ∪ U(Γ) and
Y ⊆ Z∪U(∆). The second condition is that B∩D ⊆ ((X∪Y )∩Z)∪U(Γ∪∆) for
all B D ∈ Γ∪∆. We consider the case where B D ∈ Γ. A similar argument
holds for B D ∈ ∆. By assumption we have that B ∩ D ⊆ (X ∩ Z) ∪ U(Γ)
and moreover (X ∩ Z) ∪ U(Γ) ⊆ ((X ∪ Y ) ∩ Z) ∪ U(Γ ∪ ∆) holds because U
preserves unions. This concludes the induction and the proof of the first claim
of the proposition.

For the second claim of the proposition one checks that in the base cases the
witnessing set is finite and that its finitness is preserved by the inductive step
for all rules of system P .

6 Compactness

In this section we show that the semantics of the non-well-founded games is
compact. For this we need the following notion:

Definition 18. A subalgebra A of PW is compact if for all elements A of A
and sets of elements B of A such that A ⊆

⋃
B there is a finite B′ ⊆ B such

that A ⊆
⋃
B′.

Compact subalgebras arise naturally when working with conditionals over
formulas in propositional logic. The subalgebra of all sets of maximal consistent
sets of formulas containing a given formula is a compact subalgebra of the
powerset algebra over the set of all maximal consistent sets of formulas.

Theorem 19. Let A be a compact subalgebra of PW . If Σ ∪ {A C} ⊆ {B
D | B,D ∈ A} and Hélöıse has a winning strategy in GΣ

A,C then there is a finite

Σ′ ⊆ Σ such that Hélöıse has a winning strategy in GΣ′

A,C .

Proof. We consider the tree T = (L,≤) determined by the winning strategy of
Hélöıse in GΣ

A,C starting from the position (A \ C, ∅). Let < on L be the strict
version of the converse initial segment relation ≤ meaning that t < s if t ≤ s
and not s ≤ t. The relation < on L is well-founded. If this was not the case
then there would be an infinite match in T contradicting the claim that T is
the tree of a winning strategy for Hélöıse in the game GΣ

A,C .
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The proof is an induction on the well-founded relation <. This means that
we show a claim about all elements of L by showing that the claim holds for
some s ∈ L whenever the claim holds for all t ∈ L with t < s. The claim which
we show by induction is that Hélöıse has a winning strategy in the game GΓ

A,C

for a finite Γ ⊆ Σ starting from the position (R,F ), where (R,F ) is the last
position in the play s and R,F ∈ A. The statement of the theorem then follows
from taking s to be the play consisting just of the starting position (A \C, ∅) of
the game GΣ

A,C .
So suppose we have a play s ∈ L with last position (R,F ) where R,F ∈ A

such that the claim holds for all t < s. From the position (R,F ) Abélard
can move to any position (w,F ) where w ∈ R \ F . Hélöıse’s winning strategy
provides a reply rw ∈ Σ ∪ {?} for any such w ∈ R \ F . After the reply rw the
game moves to the position pw such that

pw =

{
(B ∩D,F ∪ (B \D)) if rw = B D ∈ Σ,
(A \ C,F ) if rw = ?.

For every w ∈ R \ F we thus obtain a new play tw = s, (w,F ), pw ∈ L to which
the induction hypothesis applies because tw < s. This means that for every
w ∈ R \ F there is a finite Γw ⊆ Σ such that Hélöıse has a winning strategy for
the game GΓw

A,C starting from the position pw.
We define the area Kw for any w ∈ R\F such that Kw = B\D if rw = B D

and Kw = A ∩ C if rw = ?. By the rules of game we have that w ∈ Kw for
every w ∈ R \ F . Thus we obtain the covering

R \ F ⊆
⋃
{Kw | w ∈ R \ F}.

Since all the involved propositions are in A it follows by compactness of A that
there is a finite subcover

R \ F ⊆
⋃
{Kv | v ∈ V }, (4)

where V ⊆ R \ F is a finite set.
Define the set

Γ =
⋃
v∈V

Γv ∪ {B D | B D = rv for some v ∈ V }.

The set Γ ⊆ Σ is finite because Γv is finite for every v ∈ V and V is finite.
Note that Hélöıse’s winning strategy starting from position pv in GΓv

A,C is also a

winning strategy starting from pv in the game GΓ
A,C , since Γv ⊆ Γ and so any

move available to her in GΓv

A,C is also available to her in GΓ
A,C .

We show that Hélöıse has a winning strategy in the game GΓ
A,C starting from

the position (R,F ). We need to specify a move for Hélöıse in any position (w,F )
such that w ∈ R \F is a possible move of Abélard in (R,F ). Consider any such
w ∈ R \F . By (4) there is a v ∈ V such that w ∈ Kv. Hence we can let Hélöıse
reply rv in the position (w,F ). This moves the game into position pv. From
there on Hélöıse plays according to her winning strategy starting from pv in the
game GΓ

A,C .
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Example 20. The compactness result for the non-well-founded game for an
inference fails if the antecedents and consequents of the inference are not from a
compact subalgebra. To see this consider the following infinitary inference over
the set of worlds W = {a, b} ∪ ω where we assume a and b to be distinct from
each other and from any element of ω:

{{a} ∪ ω ω} ∪ {{n, b} {b} | n ∈ ω}
{a, b} {b}

Hélöıse’s winning strategy in the non-well-founded game for this inference is
as follows. The starting position is ({a, b} \ {b}, ∅). Abélard’s first move must
thus be a, to which Hélöıse replies with the premise {a} ∪ ω ω. This moves
the game to the position (ω, {a}). Abélard now needs to choose some number
n ∈ ω. Hélöıse can then play the corresponding premise {n, b} {b} forcing him
to play b. Hélöıse answers this move with ? and Abélard gets stuck because a is
in the forbidden area. In all matches played according to this strategy Abélard
gets stuck after a finite number of moves. Hence it is a winning strategy for
Hélöıse in the non-well-founded game.

There is however no finite subset of the premises for which Hélöıse still
has a winning strategy. To see this assume that we are playing the game for
an inference with the same conclusion as the inference above but only a finite
subset of its premises. Then for some n ∈ ω the premise {n, b} {b} is missing.
In this case Abélard has a winning strategy. He starts the match with a. If the
premise {a} ∪ ω ω is not in the finite set of premises available to Hélöıse then
she loses immediately. Otherwise she plays this premise and forces Abélard to
pick a number in ω. He then chooses the number n ∈ ω such that {n, b} {b}
is missing. Now Hélöıse is stuck.

7 Completeness of the order semantics

In this section we prove the main theorems of this paper.
For the system P∞ we obtain the following result:

Theorem 21. The following are equivalent:

1. There is a proof of the inference Σ/A C in system P∞.

2. The inference Σ/A C is valid on well-founded posets.

3. Hélöıse has a winning strategy in the game FΣ
A,C .

4. There is a witnessing set for the inference Σ/A C.

Proof. The implication from 1 to 2 is given by Proposition 2.
The implication from 2 to 3 is by contraposition. Assume that Hélöıse does

not have a winning strategy in the game FΣ
A,C . By determinacy then Abélard

has a winning strategy. From Proposition 8 we obtain a countermodel to the
validity of Σ/A C on well-founded posets.

The implication from 3 to 4 is given by Proposition 13.
The implication from 4 to 1 is given by Proposition 15.

Using compactness we obtain the version of the main theorem for the system
P . We need the following lemma:
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Lemma 22. If Σ is finite then Hélöıse has a winning strategy in GΣ
A,C iff she

has a winning strategy in FΣ
A,C .

Proof. First recall that the only difference between FΣ
A,C and GΣ

A,C are the
winning conditions for infinite matches. In the former infinite matches are won
by Hélöıse, in the latter by Abélard. So whenever Hélöıse has a winning strategy
in GΣ

A,C the same strategy is also winning in FΣ
A,C . This proves the direction

from right to left.
For the direction from left to right we show that if Σ is finite then any match

played according to a winning strategy for Hélöıse in FΣ
A,C is finite. Hence the

strategy is also winning in the game GΣ
A,C .

Assume for a contradiction that an infinite match is played. In this match
Hélöıse has to play infinitely often, and because Σ is finite either some premise
B D ∈ Σ is played infinitely often or otherwise only ? is played infinitely
often.

First consider the case that some B D ∈ Σ is played infinitely often. After
Hélöıse plays B D for the first time B \D is contained in the forbidden area.
Later in the match the forbidden area only grows so Abélard is never allowed
to pick a world in B \D. This means that Hélöıse can never play B D again
because this move is only available if the match is at a world in B \D. Hence
B D cannot be played infinitely often.

If only ? is played infinitely often there is a point in the match from which
on Hélöıse always plays ?. Hence there is a sequence of plays where Hélöıse
starts by playing ?, Abélard responds with w ∈ W and Hélöıse replies with ?
again. But for w to be a reply to the first ? it needs to hold that w ∈ A \ C,
which contradicts that Hélöıse answers with ? because this move presupposes
that w ∈ A ∩ C.

Theorem 23. Let A be a compact subalgebra of PW . If Σ ∪ {A C} ⊆ {B
D | B,D ∈ A} then the following are equivalent:

1. There is a proof of the inference Σ/A C in system P .

2. The inference Σ/A C is valid on posets.

3. Hélöıse has a winning strategy in the game GΣ
A,C .

4. There is a finite witnessing set for the inference Σ/A C.

Proof. The implication from 1 to 2 is given by Proposition 2.
The implication from 2 to 3 is by contraposition. Assume that Hélöıse does

not have a winning strategy in the game GΣ
A,C . By determinacy then Abélard

has a winning strategy. From Proposition 8 we obtain a countermodel to the
validity of Σ/A C on well-founded posets.

For the implication from 3 to 4 assume that Hélöıse has a winning strategy
in the game GΣ

A,C . Then by Theorem 19 there is a finite Σ′ ⊆ Σ such that

Hélöıse has a winning strategy in the game GΣ′

A,C . By Lemma 22 it follows that

she also has a winning strategy in FΣ′

A,C . Proposition 13 yields a witnessing set
Γ for the inference Σ′/A C. By the definition of a witnessing set we have that
Γ ⊆ Σ′ and hence Γ is finite because Σ′ is finite. Because Γ is a finite witnessing
set for Σ′/A C and Σ′ ⊆ Σ one can see from the definition of a witnessing set
that Γ is also a finite witnessing set for the inference Σ/A C.
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The implication from 4 to 1 is given by Proposition 15.

Note that if Σ is finite the assumption of compactness in the previous the-
orem is satisfied because then the subalgebra generated by A, C and all an-
tecedents and consequents of conditionals in Σ is finite and hence compact.

Completeness extends to multi-conclusion inferences as follows:

Corollary 24. A multi-conclusion inference Σ/Γ is provable in system P∞ iff
it is valid on well-founded posets.

If Σ ∪ Γ ⊆ {A C | A,C ∈ A} for a compact subalgebra A of PW then the
multi-conclusion inference Σ/Γ is provable in system P iff it is valid on posets.

Proof. It follows immediately from the definition of provability in system P∞
that a multi-conclusion inference Σ/Γ is provable in system P∞ iff there exists a
conclusion A C ∈ Γ such that Σ/A C is provable in system P∞. Analogously
we have by Corollary 4 that the inference Σ/Γ is valid on well-founded posets iff
there exists a conclusion A C ∈ Γ such that Σ/A C is valid on well-founded
posets. Hence the claim follows by Theorem 21.

The second claim follows similarly using Theorem 23.

The corollary above yields the following strong completeness result:

Corollary 25. Let Σ be a set of conditionals over a set of worlds W . Then
there is a set of worlds U , a function f : U → W and a well-founded poset
P = (U,≤) such that for all A,C ⊆W :

P |= f−1[A] f−1[C] iff Σ/A C is provable in system P∞. (5)

Proof. Let Σ be a set of conditionals over W and define Γ to be the following
set of conditionals over W :

Γ = {A C | Σ/A C is not provable in P∞}.

Clearly, Σ/Γ is not provable in system P∞. It follows by Corollary 24 that it is
not valid on well-founded posets. Hence there is a set U , a function f : U →W
and a well-founded poset P = (U,≤) such that P |= f−1[B] f−1[D] for all
B D ∈ Σ and P 6|= f−1[A] f−1[C] for all A C ∈ Γ. By the definition of Γ
the latter entails the left-to-right direction of (5).

For the right-to-left direction of (5) assume that Σ/A C is provable in
system P∞. It follows from Proposition 2 that the inference is valid on well-
founded posets. From the definition of validity we obtain that P |= f−1[A]
f−1[C] because P |= f−1[B] f−1[D] for all B D ∈ Σ.

Lastly, we obtain a similar result for system P , which is essentially Theo-
rem 5.18 from [8].

Corollary 26. Let A be a compact subalgebra of PW in the sense of Defini-
tion 18. Take some Σ ⊆ {B D | B,D ∈ A}. Then there is a set of worlds U ,
a function f : U →W and a poset P = (U,≤) such that for all A,C ∈ A:

P |= f−1[A] f−1[C] iff Σ/A C is provable in system P .

Proof. This is analogous to the proof of Corollary 25.
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8 Conclusions and further work

In this paper we introduce a game semantics for System P and use it to provide
a new completeness proof with respect to the order semantics.

The game semantics is useful to determine whether a given inference is valid
because for many inferences it is hard to find a formal proof in System P. In
such cases it is often easier to determine whether Hélöıse has a winning strategy
in the game for the inference. If one finds such a winning strategy for Hélöıse
then Propositions 13 and 15 yield a formal proof in System P. If on the other
hand one finds a winning strategy for Abélard then one immediately obtains a
countermodel using Proposition 8.

The notion of a witnessing set introduced in this paper allows for a concise
characterization of validity in System P. One can check whether an inference is
valid by searching for a subset of the set of premises that satisfies the condition
on a witnessing set from Definition 12. The inference is valid if and only if such
a set is found. If the antecedents and consequents in the conditionals are propo-
sitional formulas then verifying the two conditions in Definition 12 amounts to
checking the validity of two formulas in propositional logic. This problem is in
coNP. Thus assuming a coNP oracle our algorithm checks for the validity of an
inference by non-deterministally guessing a witnessing set. Hence the algorithm
for checking validity is in ΣP

2 = NPcoNP. This is theoretically worse than the
results from [9, 4, 12] which provide procedures that find countermodels in NP
thus demonstrating that validity is in coNP. It would, however, be interesting
to compare the performance of the different algorithms in actual applications,
since the theoretical differences in complexity rely on non-deterministic Turing
machines, which only exist in theory.

In Remark 5 we show that for completeness it is necessary to use labeling
functions in the order semantics. This suggests looking for a semantics that
does not require labeling functions. We are investigating an approach based on
antimatroids [7, ch. 2] which are a generalization of partial orders.

It might also be interesting to adapt the game semantics of this paper to
systems of conditional logic that are weaker or stronger than System P.
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