
Choice Structures in Games

Paolo Galeazzi and Johannes Marti

January 3, 2021

Abstract

Following the decision-theoretic approach to game theory, we extend the
analysis of [EW96] and [DT08] from hierarchies of preference relations to
hierarchies of choice functions. We then construct the universal choice
structure containing all these choice hierarchies, and show how the uni-
versal preference structure is embedded in it.

1 Introduction

A fundamental question in epistemic game theory is: what is the implication of
supposing that each player is rational, that each player believes that the other
is rational, and so on? The answer famously provided by [Ber84] and [Pea84] is
that the players will choose actions that are iteratively undominated. However,
the concepts of rationality, belief and iterative dominance are subject to different
definitions and interpretations. Both [Ber84] and [Pea84] develop their results
in the classic setting where a belief is a probability distribution over the states,
rationality means choosing an action that maximizes expected utility, and an
action (strongly) dominates another if it provides a higher expected payoff in
all possible states.

Consider the following game, that Ann is playing as the row player and Bob
as the column player.

l r
u 5;1 0;0
m 3;2 0;1
c 1;1 3;0
d 1;2 2;3

Ann has two dominated actions: m and d. Specifically, the mixed action
pu + (1 − p)c strongly dominates m for p ∈ (1/2, 1) and d for p ∈ (0, 1/3).
Therefore, no probabilistic belief on Bob’s actions can justify the choice of either
m or d in terms of expected utility maximization: for every probabilistic belief
of Ann, either u or c will have higher expected utility than m as well as d. This
is evident from Figure 1a, where the horizontal axis represents the probability of
Bob playing r and the vertical axis represents Ann’s expected utilities. Actions
that are consistent with the players’ rationality and common belief in rationality
are called rationalizable. In the example, the only rationalizable action profile
is (u, l), since action r is no longer rational when d is eliminated.

When, in the wake of decision-theoretic developments, classic probabilistic
beliefs are generalized to possibly non-probabilistic beliefs (e.g. [GS89, Sch89]),
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Figure 1

the game-theoretic notions of rationality, dominance and equilibrium have to be
reconsidered accordingly. Examples of these advancements in game theory can
be found e.g. in [Kli96, Lo96, Mar00, KU05, RS10, HP12, BCVMM15]. For the
sake of explanation, let us take the case where beliefs are represented by sets
of probability distributions as in the multiple-prior (MP, henceforth) model of
[GS89]. In these cases, each action is associated with a set of expected utilities,
and a natural notion of rational choice consists in picking an action with the
highest minimal expected utility. When maxmin expected utility is substituted
for expected utility maximization as the notion of rationality in the presence of
non-probabilistic belief, a question naturally arises: how is dominance defined
in this setting?

An answer is offered by [Eps97], who establishes a correspondence between
iterated elimination of MP-dominated actions and MP-rationalizability. To ex-
emplify, consider again the game above between Ann and Bob, and suppose
that both players are expected utility maximinimizers: what are then the be-
havioral implications of rationality and common belief in rationality? Figure 1a
shows that actions u, c and d are justifiable for Ann: u and c are still best
replies to some probabilistic belief, while d is now a possible best reply to some
non-probabilistic belief, e.g., the set of probability distributions that coincides
with the simplex over Bob’s actions. The MP-rationalizable action profiles are
therefore the members of the Cartesian product {u, c, d} × {l, r}.

The results about MP-dominance and MP-rationalizability in [Eps97] are
based on preference structures, i.e., type spaces whose elements consist in hierar-
chies of interactive, reflexive and transitive preference relations over Savage-style
acts. The space of all coherent preference hierarchies, i.e., the universal pref-
erence structure, is thus foundational to the results about iterated dominance
and rationalizability for decision criteria that are representable by reflexive and
transitive preference relations over acts, such as maxmin expected utility and
all other noteworthy criteria in [Eps97]. Universal preference structures have
been constructed by both [EW96] and [DT08].

Moreover, once multiple decision criteria are introduced for single-agent
problems, it is natural to think of situations where different individuals ad-
here to different criteria in playing games. In such cases, we may have for
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Figure 2

instance Ann playing the game and choosing actions according to criterion A,
while Bob is making his choices according to criterion B. Uncertainty about the
opponent’s criterion therefore enters the players’ epistemic state and spreads to
higher-order levels too: Ann may be uncertain about Bob’s criterion and about
Bob’s uncertainty relative to her criterion, and so on. Preference structures
provide a formal framework to express such interactive higher-order uncertainty
about the players’ decision criteria.

The motivation for the present work comes from the limitations imposed
by employing order relations to represent the players’ preferences, as already
recognized by [Eps97]. Not all important decision criteria are representable by
order relations and, consequently, preference structures are of no help to the
study of iterated dominance and rationalizability when rationality is defined in
terms of such criteria. A famous example is regret minimization, which violates
the principle of independence of irrelevant alternatives and hence transitivity
too. As a consequence, regret-minimizing preferences cannot be represented by
order relations and have been axiomatized by means of choice functions ([Hay08]
and [Sto11]).

Consider the game above again, but now suppose that both Ann and Bob
are regret minimizers. Figure 1b helps picture the situation, where each action
is plotted in terms of its expected negative regret. Taking advantage of the
fact that minimization of (positive) regret is equivalent to maxmin negative
regret, Figure 1b shows that action m is now a possible best reply (e.g, to the
set of probability distributions coinciding with the simplex over Bob’s actions),
whereas action d is no longer a best reply to any possible belief of Ann’s. Bob
would consequently not play action r, and the only regret-rationalizable profile
is thus (u, l).

To exemplify the reason why regret minimization violates the independence
of irrelevant alternatives, we can make use of the game above again. Suppose for
instance that Ann is a regret minimizer and her belief is represented by a convex
compact set of probability distributions assigning action r a lower probability of
0.25 and an upper probability of 1 (see Figure 2). For this specific belief, Ann
is then indifferent between actions u,m and c, when she can choose among her
four original actions (Figure 2a). However, when action u is no longer available,
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Ann will go for action c (Figure 2b): actions m and c are no longer equivalent,
in violation of the independence of irrelevant alternatives. This choice pattern
cannot be encoded by a preference order, and a choice function C such that

C({u,m, c, d}) = {u,m, c} C({m, c, d}) = {c}

has instead to be employed. These cases never arise for maxmin expected utility,
in that the relative order among possible alternatives does not change when
actions are added or removed. This is essentially the reason why criteria such as
maxmin expected utility can be axiomatized by preference orders ([GS89]), while
context-dependent criteria like regret minimization require the use of choice
functions ([Hay08] and [Sto11]).

The present paper aims to build the interactive epistemic structures required
to take into account cases of decision criteria like regret minimization, where
preference orders are insufficient to represent the players’ rationality. Such mo-
tivation justifies the shift from hierarchies of interactive preference orders to
hierarchies of interactive choice functions, that is, the shift from preference
structures to choice structures. In doing so, we define here the notion of choice
structure and build the universal choice structure, i.e., the structure containing
all coherent hierarchies of choice functions.

Apart from the philosophical and conceptual motivation of this work, choice
structures turn out to be the most general models for interactive epistemology
and epistemic game theory introduced so far. Since preference orders are spe-
cial cases of choice functions, the universal choice structure embeds the universal
preference structure, as we show later, which in turn embeds the universal type
structure. On a more formal side, moreover, the construction of the universal
choice structure makes use of a toolkit from the theory of coalgebras and cat-
egory theory, which may also shed new light on the construction of both the
universal type structure and the universal preference structure.

The paper is structured as follows. Section 2 introduces the setting and
the preliminary notions that are used in Section 3 to construct hierarchies of
choice functions and the universal choice structure. Section 4 shows how the
universal preference structure is embedded into the universal choice structure,
and Section 5 concludes.

2 Preliminaries

In this section we introduce the mathematical notions that will be employed in
game-theoretic contexts in the following sections.

2.1 Uncertainty spaces

We are working with uncertainty spaces, or simply spaces, (X,B), where X is
any set, whose elements are called states, and B ⊆ 2X is an algebra of subsets
of X, whose elements are called measurable sets or events.1 We often write just
X for an uncertainty space (X,B). We implicitly take every finite set Z to be

1That B is an algebra means that it is closed under finite intersections and complements.
Thus, an uncertainty space (X,B) is almost a measurable space, but without requiring closure
under countable intersections.
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an uncertainty space (Z,B) in which every subset is measurable, meaning that
B = 2Z is the discrete algebra containing all subsets of Z.

A morphism ϕ from an uncertainty space X to an uncertainty space Y is
any function ϕ : X → Y that is measurable, meaning that ϕ−1[E] = {x ∈
X | ϕ(x) ∈ E} is measurable in X whenever E is measurable in Y . For every
uncertainty space X = (X,B) we use idX to denote the measurable identity
function on X that is idX : X → X,x 7→ x.

Given two uncertainty spaces X and Y we can define their product to be
the uncertainty space X × Y whose states are all pairs (x, y) where the first
component is a state in X and the second component is a state in Y . The
measurable sets of states are generated by taking finite unions and complements
of cylinders, that is, sets of the form U × Y and X × V for measurable U in
X and V measurable in Y . It is clear that with this algebra the projections
π1 : X × Y → X, (x, y) 7→ x and π2 : X × Y → Y, (x, y) 7→ y are measurable
functions. Moreover given two measurable functions ϕ : X → X ′ and ψ : Y →
Y ′ we use ϕ× ψ : X × Y → X ′ × Y ′ to denote the measurable function, which
is defined such that (ϕ×ψ)(x, y) = (ϕ(x), ψ(y)) for all (x, y) ∈ X ×Y . It is not
hard to check that this ϕ× ψ is indeed measurable.

2.2 Acts

Fix a finite non-empty set Z of outcomes. An act for an uncertainty space X
is a measurable function f : X → Z. Using that the measurable sets in X
are closed under finite unions one easily checks that a function f : X → Z
for a finite Z, with the discrete algebra, is measurable precisely if f−1[{z}]
is measurable for all z ∈ Z. We write FX for the set of all acts for some
uncertainty space X. For every measurable function ϕ : X → Y we obtain a
function Fϕ : FY → FX, f 7→ f ◦ ϕ.

2.3 Choice functions

A choice function over a set X is a function C that maps every finite subset
F ⊆ X to one of its subsets C(F ) ⊆ F . For any set X we write CX for the
set of all choice functions over X. Even if X is just a set, without a notion of
measurable subset, we take CX to be the uncertainty space in which a set is
measurable if it can be generated by taking finite intersections and complements
of sets of the form

BK
L = {C ∈ CX | C(K) ⊆ L},

for some finite K,L ⊆ X with L ⊆ K.
Given any function f : X → Y we define the function Cf : CY → CX by

setting Cf(C) = Cf , where Cf is the choice function mapping a finite K ⊆ X
to

Cf (K) = f−1[C(f [K])] ∩K.
We use f [K] ⊆ Y to denote the direct image f [K] = {f(x) ∈ Y | x ∈ K} of K.
One can show that the function Cf : CY → CX is measurable. To see this one
first checks that for all measurable sets of the form BK

L with K ⊆ L

(Cf)−1[BK
L ] = {C ∈ CY | f−1[C(f [K])] ∩K ⊆ L}

= {C ∈ CY | C(f [K]) ⊆ L̂} = B
f [K]

L̂
,
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where L̂ = {y ∈ f [K] | f−1[{y}] ∩ K ⊆ L}. This then extends to arbitrary
measurable sets because intersections and complements are preserved under
taking inverse images.

2.4 Choice functions over acts

We then consider choice functions over acts for some uncertainty space X. For
every uncertainty space X we define the uncertainty space ΓX = CFX to be
the uncertainty space of all choice functions over acts for X. Moreover, for
every measurable function ϕ : X → Y we can define the measurable function
Γϕ = CFϕ : ΓX → ΓY . Unfolding the definitions this means that for every
C ∈ ΓX we have the choice function Γϕ(C) = Cϕ is such that

Cϕ(K) = {f ∈ K | f ◦ ϕ ∈ C({g ◦ ϕ | g ∈ K})}

for all finite sets of acts K ⊆ FY .

3 Choice structures

In this section, the notions introduced above are applied to the game-theoretic
context that we are interested in. To keep things simple, we focus here on inter-
active situations with only two players, Ann and Bob. It is straightforward to
adapt our setting to more than two players, but this would introduce additional
notational complications.

3.1 Choice Structures

As we are working with two-player games, the basic uncertainty of Ann is just
over the fixed finite set Sb of Bob’s strategies and, similarly, the basic uncertainty
of Bob is over the fixed finite set of Ann’s strategies Sa. We thus obtain the
following definition of a choice structure:

Definition 1. A choice structure is a tuple X = (Ta, Tb, θa, θb) consisting of:

� uncertainty spaces Ta and Tb of types for Ann and Bob,

� measurable functions θa : Ta → Γ(Sb × Tb) and θb : Tb → Γ(Sa × Ta).

A morphism α : X → X ′ from a choice structure X = (Ta, Tb, θa, θb) to
a choice structure X ′ = (T ′a, T

′
b, θ
′
a, θ
′
b) consists of two measurable functions

αa : Ta → T ′a and αb : Tb → T ′b such that

θ′a ◦ αa = Γ(idSb
× αb) ◦ θa and θ′b ◦ αb = Γ(idSa

× αa) ◦ θb.

A state in X is a tuple (sa, sb, ta, tb) ∈ Sa × Sb × Ta × Tb. We also say
that a state of Ann is a pair (sa, ta) ∈ Sa × Ta and a state of Bob is a pair
(sb, tb) ∈ Sb × Tb. A state of a player therefore consists of a strategy that she is
actually playing and a type that represents her ”mental state”. An act of Ann
is then a map Sb × Tb → Z from states of Bob to outcomes, and similarly for
Bob. We hence model the type of a player by her choices between acts whose
outcome depends on the state of the other player, but not on her own state. We
remark here that this is different from the setting in [DT08], and it is related to
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the introspection properties of the two frameworks. In our construction, players
are introspective in the sense of not having uncertainty about their own state.
In the structure of [DT08], on the contrary, players may be uncertain about
their own strategies and types at a state.2 The definitions and results of this
paper could be easily adapted to the case where the players are uncertain about
their own type and strategy.

Example 1. We provide an example of a choice structure X = (Ta, Tb, θa, θb) for
the game from the introduction. Consider again the game from the introduction,
and a choice structure where Ann has a single type Ta = {ta}, while Bob has two
possible types Tb = {tMm, tEU}. Here, we interpret Ann’s type ta as a regret
minimizer with belief represented as in Figure 2, i.e., a convex compact set of
probability distributions assigning action r lower probability of 0.25 and upper
probability of 1, while Bob’s type tMm is a maximinimizer with full uncertainty,
i.e., not excluding any probability distribution over Ann’s strategies, and Bob’s
type tEU is an expected utility maximizer assigning probability 1/2 to Ann
playing u and 1/2 to Ann playing d. The states of the choice structure are
given by the Cartesian set Sa × Sb × Ta × Tb, i.e.,

{u,m, c, d} × {l, r} × {ta} × {tMm, tEU}.

Ann’s states are then members of the set {u,m, c, d} × {ta} and Bob’s states
are members of the set {l, r}× {tMm, tEU}. The set of outcomes Z is naturally
given by the outcomes of the game,

Z = {(5, 1), (3, 2), (1, 1), (1, 2), (0, 0), (0, 1), (3, 0), (2, 3)}.

The map θa then associates each of Ann’s types with a choice function over acts
defined on Bob’s states. In the running example, such acts are

fu(l, t) = (5, 1) fu(r, t) = (0, 0) for both t ∈ Tb
fm(l, t) = (3, 2) fm(r, t) = (0, 1) for both t ∈ Tb
fc(l, t) = (1, 1) fc(r, t) = (3, 0) for both t ∈ Tb
fd(l, t) = (1, 2) fd(r, t) = (2, 3) for both t ∈ Tb

Similarly, Bob’s acts are the following:

fl(u, ta) = (5, 1) fr(u, ta) = (0, 0)
fl(m, ta) = (3, 2) fr(m, ta) = (0, 1)
fl(c, ta) = (1, 1) fr(c, ta) = (3, 0)
fl(d, ta) = (1, 2) fr(d, ta) = (2, 3)

When Ann’s type ta is a regret minimizer as described above, the choice function
Ca = θa(ta) associated with ta maps subsets of the set of acts defined above as
follows:

Ca({fu, fm, fc, fd}) = {fu, fm, fc} Ca({fm, fd}) = {fd}
Ca({fu, fm, fc}) = {fu, fm} Ca({fc, fd}) = {fc}
Ca({fu, fm, fd}) = {fu, fm} Ca({fu, fm}) = {fu}
Ca({fu, fc, fd}) = {fu} Ca({fu, fd}) = {fu}
Ca({fm, fc, fd}) = {fc} Ca({fu, fc}) = {fu, fc}
Ca({fm, fc}) = {fc}

2See Sections 3.1 and 3.2 in [DT08].
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where we dispense with specifying the choice function in trivial cases such as
singletons. The definition of a choice structure would also require Ca to be
defined on all other subsets of F (Sb × Tb). For brevity we give the definition
of Ca only on subsets of {fu, fm, fc, fd}, which are the acts corresponding to
strategies in the game. As for Bob, we have that type tMm is associated with
the choice function

CMm({fl, fr}) = {fl}

and type tEU with the choice function

CEU ({fl, fr}) = {fl, fr}.

Again, we omit the definition of these choice functions on sets of acts which do
not correspond to strategies in the game.

3.2 Choice hierarchies and the universal choice structure

We now introduce hierarchies of choice functions that represent the higher-order
attitudes of the players. To this aim we define uncertainty spaces representing
the players’ n-th order attitudes by a mutual induction on a and b. In the base
case we set Ωa,1 = ΓSb and Ωb,1 = ΓSa, and for the inductive step Ωa,n+1 =
Γ(Sb ×Ωb,n) and Ωb,n+1 = Γ(Sa ×Ωa,n). The intuition is that the players’ first
order attitudes are represented by their choices between acts whose outcome
depends just on the actual strategy played by the opponent. Players’ n + 1-th
order attitudes are represented by their choices between acts, whose outcome
depends on the actual strategy played by the opponent and the n-th order
attitudes of the opponent.

Note that the players’ (n+ 1)-th order attitudes determine their n-th order
attitudes. At the first level this means that the agent’s choices in Ωa,1 between
acts that depend on the opponent’s strategy are the same as her choices between
acts in Ωa,2, when they are taken as additionally depending trivially on the
opponent’s first-order attitudes. This can be made precise with a measurable
coherence morphism ξa,1 = Γπ1 : Ωa,2 → Ωa,1, where π1 : Sb × Ωb,1 → Sb

is the projection onto the first component. When o2 ∈ Ωa,2 represents Ann’s
second-order attitudes then ξa,1(o2) ∈ Ωa,1 represents her first-order attitudes.

Analogously, we define a coherence morphism for Bob, by setting ξb,1 = Γπ1 :
Ωb,2 → Ωb,1, where π1 : Sb × Ωb,1 → Sb. From now on we will not bother with
writing every equation explicitly for Ann on Bob. We just write the version for
Ann and then write “and similarly for Bob”, thereby meaning that the equation
also holds with a and b interchanged.

By induction we can extend the idea of coherence to the higher levels.
Choices between acts depending on the opponent’s strategy and n-th order at-
titudes of the opponent are determined by choices between the same acts taken
as depending on the opponent’s strategies and their (n+ 1)-th order attitudes.
Hence, we define by mutual induction

ξa,n+1 = Γ(idSb
× ξb,n) : Γ(Sb × Ωb,n+1)→ Γ(Sb × Ωb,n),

and similarly for Bob ξb,n+1 = Γ(idSa × ξa,n).
In the limit one can then consider countable sequences o = (o1, o2, . . . , on, . . . )

with on ∈ Ωa,n for all n ∈ ω, which are coherent in the sense that ξa,n(on+1) =
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on for all n. One such sequence completely describes a coherent state of Ann’s
higher-order attitudes at all levels. Let Ωa be the infinite set of all such coherent
sequences. There are projections ζa,n : Ωa → Ωa,n for every level n ∈ ω. The set
Ωa becomes a measurable space when endowed with the algebra generated from
all the subsets of the form (ζa,n)−1[On] for n ∈ ω and measurable On ⊆ Ωa,n.
All these notions can also be defined analogously for Bob.

In the appendix we prove the central result about this construction, which
is that there exist the following isomorphisms:

Theorem 1. Ωa ' Γ(Sb × Ωb) and Ωb ' Γ(Sa × Ωa).

The measurable functions µa : Ωa → Γ(Sb × Ωb) and µb : Ωb → Γ(Sa × Ωa)
that witness the isomorphisms from Theorem 1 allow us to define the universal
choice structure:

Definition 2. The universal choice structure U = (Ωa,Ωb, µa, µb) consists of
the uncertainty space Ωa and Ωb of all coherent sequences of choice attitudes,
together with the measurable functions µa : Ωa → Γ(Sb × Ωb) and µb : Ωb →
Γ(Sa × Ωa) from Theorem 1.

There is a technical difference between our presentation and the approach
that is usually taken in the literature, such as for instance [MZ85, BD93, EW96,
DT08]. It is common to define the (n+1)-th level Ωa,n+1 as consisting of all pairs
(x, y) ∈ Ωa,n×ΓΩb,n that are coherent in the sense that the attitudes represented
by x are consistent with the attitudes represented by y, in a sense similar to our
coherence morphisms ξa,n. In the limit one then considers sequences (o1, o2, . . . )
such that oi ∈ ΓΩb,i for all i ∈ ω. Our approach is equivalent to this approach,
once coherence of the whole infinite sequences is taken into account.

3.3 Universality of the universal choice structure

Every type t ∈ Ta in any choice structure X = (Ta, Tb, θa, θb) generates a coher-
ent sequence of attitudes in Ωa. To see it, let us define first υa,1 = Γπ1 ◦ θa :
Ta → Ωa,1, t 7→ Γπ1(θa(t)), where π1 : Sb × Tb → Sb is the projection. Similarly
we define υb,1 : Tb → Ωb,1. We can then continue by mutual induction and set

υa,n+1 = Γ(idSb
× υb,n) ◦ θa : Ta → Ωa,n+1,

t 7→ Γ(idSb
× υb,n)(θa(t)).

Similarly we define υb,n+1 : Tb → Ωb,n+1.
One can easily verify that υa,n = ξa,n ◦ υa,n+1 for all n. Hence, for each

t ∈ Ta the infinite sequence (υa,1(t), υa,2(t), . . . ) is coherent and we obtain a
measurable map υa : Ta → Ωa. Similarly we also obtain a measurable map
υb : Tb → Ωb. In the appendix we show that υa and υb together define a unique
morphism υ into the universal choice structure:

Theorem 2. For every choice structure X there is a unique morphism of choice
structures υ : X → U from X to the universal choice structure U .

4 Embedding preference structures

In this section we discuss how our hierarchies of choice functions relate to the
hierarchies of preference relations introduced in [DT08].
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4.1 Di Tillio’s preference structures

We start by reviewing the approach by [DT08] in our notation. The fundamental
notion of [DT08] is that of a preference relation over a set X. In the following
a preference relation 4 over X is a poset, that is a reflexive, transitive and
anti-symmetric relation, over the set X. We require preference relations to be
anti-symmetric. This is different from [DT08], who requires preference relations
to be just preorders, that means reflexive and transitive, but not necessarily
anti-symmetric relations. We justify this apparent loss of generality in Remark 1
below. In most of our arguments anti-symmetry does not play a role and hence
they also work for preorders. Our reason to require anti-symmetry is that in the
case of preorders the embedding from preference relations into choice functions
need not be injective.

Write PX for the set of all preference relations over the set X. The set PX
can be turned into an uncertainty space by generating the algebra of measurable
events from sets of the form Bx14x2 = {4 ∈ PX | x1 4 x2} for some x1, x2 ∈ X.

Every function f : X → Y gives rise to the measurable function Pf : PY →
PX, where a preference relation 4 over Y maps to the preference relation
Pf(4) = 4f over Y that is defined by

x1 4f x2 iff f(x1) 4 f(x2). (1)

We can then redo all the constructions from Section 3 using P instead of C.
Let us sketch how this works.

One considers preference relations over acts by considering for every un-
certainty space X the space ΠX = PFX. For every measurable function
ϕ : X → Y we obtain the measurable function Πϕ = PFϕ : ΠX → ΠY
which maps a preference relation 4 over FX to the preference relation 4ϕ over
FY that is defined such that f 4ϕ g iff f ◦ ϕ 4 g ◦ ϕ.

Lastly, define a preference structure to be a tuple X = (Ta, Tb, θa, θb) where
θa : Ta → Π(Sb × Tb) and θb : Tb → Π(Sa × Ta) are measurable functions. A
morphism α : X → X ′ from a preference structure X = (Ta, Tb, θa, θb) to a
preference structure X ′ = (T ′a, T

′
b, θ
′
a, θ
′
b) consists of two measurable functions

αa : Ta → T ′a and αb : Tb → T ′b such that

θ′a ◦ αa = Π(idSb
× αb) ◦ θa and θ′b ◦ αb = Π(idSa

× αa) ◦ θb.

Note that this definition of a preference structure differs from the one given in
[DT08] with respect to the assumption of introspection mentioned in Section 3.1.

The universal preference structure U ′ = (Ω′a,Ω
′
b, µ
′
a, µ
′
b) can be defined from

the limits Ω′a and Ω′b of analogous sequences (Ω′a,n, ξ
′
a,n)n∈ω and (Ω′b,n, ξ

′
b,n)n∈ω

as those that are used to approximate the universal choice structure in the
previous section. Hence, set Ω′a,1 = ΠSb, Ω′b,1 = ΠSa and then inductively
Ω′a,n+1 = Π(Sb × Ω′b,n) and Ω′b,n+1 = Π(Sa × Ω′a,n). The coherence morphism
are such that ξ′a,1 = Ππ1, ξ′b,1 = Ππ2 and inductively ξ′a,n+1 = Π(idSb

×ξ′b,n) and
ξ′b,n+1 = Π(idSa × ξ′a,n). The existence of suitable µ′a and µ′b and universality
properties of U ′ then follow from a construction that is analogous to the one
given in Appendix C, using Π in place of Γ. The properties of Π that are
required for this construction to succeed are stated in Section 3 of [DT08].
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4.2 Maximization

We use maximization to map preference orders to choice functions. Given a finite
set of alternatives, a player with a given preference relation chooses the most
preferred alternatives of the set. Formally, this means that given a preference
relation 4 ∈ PX over a set X we map it to the choice function mX(4) ∈ CX
that assigns to a finite set K ⊆ X the set mX(4)(K) of its maximal elements,
which is defined as follows:

mX(4)(K) = {m ∈ K | there is no k ∈ K with m ≺ k},

where x ≺ y is defined to hold iff x 4 y and not y 4 x. This definition yields
a measurable function mX : PX → CX for every set X. To prove that it is
measurable it suffices to show that for every basic event BK

L = {C ∈ CX |
C(K) ⊆ L} of CX its preimage m−1

X [BK
L ] is measurable in PX. To see that

this is the case first observe that the set of maximal elements of a set K in a
preference relation 4 is a subset of L iff for every element k ∈ K \ L there is
some l ∈ L such that k 4 l and not l 4 k. Thus we can write

m−1
X [BK

L ] =
⋂

k∈K\L

⋃
l∈L

(Bk4l \Bl4k) .

Since K, L and hence also K \ L are finite the right side of the above equal-
ity is a finite intersection of finite unions of intersections of basic events with
complements of basic events.

Remark 1. With our definition of the choice function mX(4) from the prefer-
ence relation 4 we do not lose any generality by restricting to posets instead of
preorders. For every preorder 4 we can define the poset 4′ by setting x 4′ x′

iff x = x′ or, x 4 x′ and not x′ 4 x. One can show that 4′ is anti-symmetric
and that the maximal elements of any finite set K ⊆ X in 4′ are the same as
the maximal elements of K in 4, meaning that mX(4′)(K) = mX(4)(K). It
follows from this that any choice function that arises from maximization in some
preorder also arises from maximization in some poset. Hence, the restriction to
posets does not lose any generality in the class of choice behaviors that we can
account for.

There are examples in which the preorders 4 and 4′ are distinct. For in-
stance, we might take X = {x1, x2} to be a two element set and 4 the total
relation, in which the two elements of X are equally preferred, meaning that
x1 4 x2 and x2 4 x1. Applying the definition of 4′ from above shows that 4′

is then the poset in which x1 and x2 are incomparable, meaning that neither
x1 4′ x2 nor x2 4′ x1. We have then that mX(4)(K) = K = mX(4′)(K) for
every K ⊆ X. Hence there exist two preorders that account for the same choice
behavior. We show in the following proposition that this redundancy disappears
if one restricts to posets.

The next proposition shows that any two distinct preference relations give
rise via maximization to distinct choice functions. We show this proposition
in the appendix. It relies on our assumption that preference relations are anti-
symmetric.

Proposition 1. The measurable function mX : PX → CX is injective for all
sets X.

11



We can extend maximization to preference relations and choice functions
over acts by defining for every space X the measurable function λX = mFX :
ΠX → ΓX. A crucial property of λX is stated in the following proposition,
which we prove in the appendix:

Proposition 2. The mapping λX is natural in X. This means that for every
measurable function ϕ : X → Y we have that λY ◦Πϕ = Γϕ ◦ λX .

4.3 Embedding preference structures into choice struc-
tures

We can use the λ to turn preference structures into choice structures. For every
preference structure X = (Ta, Tb, θa, θb) define the choice structure λ(X ) =
(Ta, Tb, λSb×Tb

◦ θa, λSa×Ta
◦ θb). It is an easy consequence of Proposition 2 that

this embedding preserves morphisms in the sense that whenever χ : X → X ′ is
a morphism of preference structures then the same pair of measurable functions
is also a morphism of choice structures χ : λ(X )→ λ(X ′).

It is also possible to characterize the class of choice structures λ(X ) =
(Ta, Tb, λSb×Tb

◦ θa, λSa×Ta ◦ θb) arising from some preference structure X =
(Ta, Tb, θa, θb). To this end, one can use any of the axiomatizations of the class
P of choice functions that arise from the maximization in a poset. Such an
axiomatization is given for instance in Theorem 2.9 of [ABM07]. We then have
that a choice structure X ′ = (T ′a, T

′
b, θ
′
a, θ
′
b) is equal to λ(X ) for some pref-

erence structure X iff for all types ta ∈ T ′a and tb ∈ T ′b the choice functions
θa(ta) ∈ Γ(Sb × T ′b) and θb(tb) ∈ Γ(Sa × T ′a) are in P.

Because λX is injective for every space X, it follows that whenever λ(X ) =
λ(X ′) for preference structures X and X ′ then X = X ′. Therefore, any difference
between preference structures is preserved in choice structures. One can also
define an injective embedding of the universal preference structure into the
universal choice structure. Consider the unique morphism υ : λ(U ′) → U of
choice structures from λ(U ′) to U that exists by Theorem 2. This morphism
consists of two measurable functions υa : Ω′a → Ωa and υb : Ω′b → Ωb for which
we argue in the appendix that it is injective if Sa and Sb are finite. Hence, we
obtain the following theorem:

Theorem 3. Assume that Sa and Sb are finite. Then the uncertainty spaces
Ω′a and Ω′b of all preference hierarchies are isomorphic to two subspaces of the
spaces of all choice hierarchies Ωa and Ωb respectively.

5 Conclusion and further work

Differently from [EW96] and [DT08], in this paper we take choice functions
rather than preference relations as primitives for describing the decisions of the
players. Our main result is the construction of the universal structure of all
hierarchies of choice functions, and we then show how hierarchies of preference
relations are embedded in this universal choice structure.

Similar to [DT08], here we mostly work with finite sets, in particular it is
crucial that the outcome set Z is finite. We leave for future investigation to
extend the analysis to the infinite case by considering for instance compact
Hausdorff spaces of outcomes as in [EW96].
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A Preliminaries

The appendix contains technical proofs about the constructions of the universal
choice structure from Section 3 and the embedding of the universal preference
structure into the universal choice structure from Section 4. We view these
constructions as instances of more general constructions from the theory of
coalgebras [Jac16]. Thereby, we follow the approach laid out in [MV04], who
show how classical probabilistic type spaces can be seen as coalgebras.

We start off by explaining the notion of a coalgebra and how choice structures
are instances of this concept. We first need to introduce some basic notions from
category theory [Lan98, Awo06].

A.1 Categories

A category C is a collection of objects, possibly a proper class, together with a
collection of morphisms, written as f : X → Y , between any two objects X and
Y such that for every object X in C there is an identity morphism idX : X → X
and for all objects X, Y and Z, and morphisms f : X → Y from X to Y and
g : Y → Z from Y to Z their composition g◦f : X → Z is a morphism in C from
X to Z. The identities and compositions are required to satisfy the identity law
that f ◦ idX = f = idY ◦ f for all morphism f : X → Y and the associativity
law that (h ◦ g) ◦ f = h ◦ (g ◦ f) for all f : X → Y , g : Y → Z and h : Z → U .
For a morphism f : X → Y in C we call the object X the domain of f and the
object Y the codomain of f .

Examples of categories, which we use in this paper, are the category of
sets Set, which has all the sets as its objects and functions between them as
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morphism, and the category of uncertainty spaces Unc, which has uncertainty
spaces as objects and measurable functions as morphisms. These clearly satisfy
the identity and associativity laws if one uses the standard identity functions
as identity morphisms and the standard compositions of functions for the com-
position. A different kind of example is the category CS of all choice structures
as defined in Section 3 with morphisms of choice structures between them. The
results of this paper mostly concern the structure of this category CS.

A more technical example of a category is Unc2, which has pairs X =
(X0, X1) of uncertainty spaces X0 and X1 as objects and in which the mor-
phisms from X = (X0, X1) to Y = (Y0, Y1) are pairs of measurable functions
ϕ = (ϕ0, ϕ1). One can check that this is a category, when one gives the obvious
component-wise definition of identities and composition. We use the category
Unc2 as a convenient abstraction for the technical results of this appendix be-
cause it concisely represents situations that concern the uncertainty of two play-
ers. In an object X = (X0, X1) of Unc2, the uncertainty space X0 represents
the uncertainty of Ann, whereas X1 represents the uncertainty of Bob.

A.2 Functors

A functor G from a category C to a category D is an assignment of an object GX
in D to every object X of C and an assignment of a morphism Gf : GX → GY in
D to every morphism f : X → Y in C that preserves identities and compositions,
meaning that GidX = idGX for all X and G(g ◦ f) = Gg ◦ Gf for all g and f .
If G is a functor from a category C to the same category C one also calls G an
endofunctor.

A contravariant functor from C to D is a functor from C to Dop, where Dop

is just like D, but the direction of all morphisms is turned around. When G
is a contravariant functor from C to D, one usually just thinks of it as turning
morphisms around, in the sense that Gf : GY → GX for all f : X → Y . If one
wants to emphasize that a functor G from C to D is not contravariant, one calls
G covariant.

An example of a functor from this paper is the mapping sending an uncer-
tainty space X to the set FX of acts for X. This is a contravariant functor from
uncertainty spaces to sets, that in category theory is called the contravariant
hom-functor Hom(−, Z), where Z is the finite space of outcomes.

Another example of a functor is the mapping C from Section 2.3, which sends
a set X to the uncertainty space CX of choice functions over that set. This
defines a contravariant functor from the category of sets to the the category of
uncertainty spaces. It is straightforward to check that it preserves identities.
To see that C preserves the composition of morphisms one sees after unfolding
the definitions that this amounts to checking the following equality:

f−1[g−1[C(g[f [K]])]] ∩K = f−1[g−1[C(f [g[K]])] ∩ g[K]] ∩K,

for all finite sets K ⊆ Y , and functions f : X → Y and g : Y →W .
The mapping Γ from Section 2.4 is a covariant endofunctor on the category

of uncertainty spaces that results from first applying the contravariant functor
F from uncertainty spaces to sets and then the contravariant functor C to get
back to uncertainty spaces. Because the effects of the two contravariant functors
F and C cancel out, this means that Γ is a covariant functor.
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The mappings P and Π from [DT08], which we survey in Section 4.1, can
also be seen as functors analogous to C and Γ. That is, P is a contravariant
functor from Set to Unc and Π is the covariant endofunctor on Unc that results
from first applying the contravariant functor F from Unc to Set and then the
functor P.

A.3 Coalgebras

We now explain how choice structures can be seen as an instance of the more
general notion of a coalgebra for an endofunctor in some category.

To define the notion of a coalgebra we need to fix a category C and an
endofunctor G on C, that is, a functor G from C to C. A G-coalgebra (X, ξ)
is an object X of C together with a morphism ξ : X → GX in C. The class
of all G-coalgebras can be turned into a category by taking as morphism from
a G-coalgebra (X, ξ) to a G-coalgebra (Y, υ) all morphisms f : X → Y in the
category C that satisfy the property that υ ◦ f = Gf ◦ ξ.

Choice structures for fixed sets Sa and Sb of strategies can be defined as
coalgebras for a particular functor Γ♥ over the category Unc2. The functor
Γ♥ maps an object (X1, X2) to the object (Γ(Sb × X2),Γ(Sa × X1)). The
change of indices in the components is intentional, as it corresponds to encoding
attitudes about the opponent’s attitudes. For morphisms the functor Γ♥ sends
a pair of measurable functions (ϕ1, ϕ2) from (X1, X2) to (Y1, Y2) to the pair of
measurable functions (Γ(idSb

×ϕ2),Γ(idSa
×ϕ1)) from (Γ(Sb×X2),Γ(Sa×X1))

to (Γ(Sb × Y2),Γ(Sa × Y1)).
We can view every choice structure X = (Ta, Tb, θa, θb), defined accord-

ing to Definition 1, as a Γ♥-coalgebra ((Ta, Tb), (θa, θb)) on the object (Ta, Tb)
of Unc2 with the morphism (θa, θb) : (Ta, Tb) → Γ♥(Ta, Tb). Conversely, ev-
ery Γ♥-coalgebra ((Xa, Xb), (ξa, ξb)) contains measurable functions ξa : Xa →
Γ(Sb ×Xb) and ξb : Xb → Γ(Sa ×Xa) and thus gives rise to a choice structure
(Xa, Xb, ξa, ξb). One can also check that the morphisms of choice structures,
as defined in Definition 1, correspond precisely to the coalgebra morphisms be-
tween Γ♥-coalgebras.

Analogous to choice structures one can view preference structures as coalge-
bras for a functor. To this aim one considers the functor Π♥ from Unc2 to Unc2

that is defined by replacing all occurrences of Γ in the definition of Γ♥ with Π.
This means that Π♥ sends an object (X1, X2) to (Γ(Sb ×X2),Γ(Sa ×X1)) and
a morphism (ϕ1, ϕ2) to (Π(idSb

× ϕ2),Π(idSa
× ϕ1)).

A.4 Isomorphisms and epic or monic morphisms

A morphism f : X → Y in a category C is an isomorphism if there exists a
morphism g : Y → X such that g ◦ f = idX and f ◦ g = idY . One writes X ' Y
in case there exists an isomorphism f : X → Y . One can check that in the
category of sets the isomorphism are precisely the bijective functions and in the
category Unc they are the bijective measurable functions whose inverse is also
measurable, analogously to the homeomorphism between topological spaces.
The isomorphisms in Unc2 are those pairs (ϕ1, ϕ2) of morphism such that both
ϕ1 and ϕ2 are isomorphisms in Unc.

A morphism f : X → Y is epic if for all further morphisms g, h : Y → T
it holds that if g ◦ f = h ◦ f then already g = h. A morphism f : X → Y is
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monic if for all further morphisms g, h : T → X it holds that if f ◦ g = f ◦ h
then already g = h. One can check that in the category of sets epic morphism
are precisely the surjective functions and monic morphism are precisely the
injective functions. Similarly, in the category of uncertainty spaces are the epic
and monic morphisms are the surjective and injective measurable functions.
Epic and monic morphisms in Unc2 are epic and monic in both components.
That is, (ϕ1, ϕ2) is epic if both ϕ1 and ϕ2 are epic, and analogously for monic.

A functor F from C to D preserves an epic morphism f of C if Ff is epic
in D, and F preserves a monic morphism f if Ff is monic. Note that, because
an epic morphism in Dop is monic in D, a contravariant functor F from C to
D preserves an epic morphism f if Ff is monic in D, and analogously for the
preservation of monic morphisms.

We show in Sections B.1 and B.2 that Γ preserves all epic morphisms and
that it preserves all monic morphisms ϕ : X → Y for which Y is a discrete
space.

A.5 Terminal objects, products and limits of chains

We make use of three different instances of the notion of a limit: terminal
objects, products and limits of chains. We define these three concepts separately
in the following, but to the interested reader it should be noted that they are all
instances of the more general concept of a limit for a diagram, which is discussed
in all of the texts on category theory cited above.

A terminal object in a category C is any object > with the property that
for every object T of C there exists a unique morphism !T : T → >. It follows
directly from this definition that any two terminal objects in some category
need to be isomorphic. Hence, as long as one only cares about the existence
of objects up-to isomorphism, one can assume that there is a unique terminal
object of a category, if any terminal object exists in the category.

The terminal object in the category Unc can be defined as the uncertainty
space > = ({?}, {∅, {?}}) which contains just one point. The terminal object in
the category Unc2 can be defined componentwise as the object (>,>) where >
is the terminal object of Unc. A more interesting example of a terminal object
is the universal choice structure. The universality property from Theorem 2
expresses precisely that the universal choice structure is the terminal object in
the category of choice structures.

Given two objects X and Y of a category C, a product of X and Y is an
object of C, written as X × Y , together with two morphism π1 : X × Y → X
and π2 : X × Y → Y , which have the following universal property: For every
object T and morphisms f : T → X and g : T → Y there is a morphism
u : T → X × Y , often written as (f, g), that is unique for having the property
that f = π1 ◦ u and g = π2 ◦ u.

One can see that any two objects with this universal property, relative to
fixed X and Y , need to be isomorphic. Hence, one often speaks of the product
of X and Y as if it was unique.

In the category Unc one can define the product X × Y of two uncertainty
spaces X and Y to be an uncertainty space whose states are all pairs (x, y)
where x is a state of X and y is a state of Y . The measurable sets of states are
generated by taking finite unions and complements of cylinders, that is, sets of
the form U × Y and X × V for measurable U in X and V measurable in Y . It
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is clear that with this algebra the projections π1 : X × Y → X, (x, y) 7→ x and
π2 : X × Y → Y, (x, y) 7→ y are measurable functions. Moreover, one can check
that this definition of the product has the universal property that for each space
T together with measurable functions ϕ : T → X and ψ : T → Y there is a
unique measurable function µ : T → X×Y, t 7→ (ϕ(t), ψ(t)) such that ϕ = π1◦µ
and ψ = π2 ◦ µ.

We need a further piece of notation related to the product: given f : X → Z
and g : Y → U we write f × g : X × Y → Z × U for the morphism f × g =
(f ◦ π1, g ◦ π2). It is easy to check that this definition generalizes our earlier
definition of ϕ×ψ for measurable function ϕ and ψ in the category of uncertainty
spaces.

A crucial categorical notion for the construction of the universal choice struc-
ture is that of the limit of a countable cochain. A countable cochain (Xn, fn)n∈ω
in a category C consists of an object Xn of C for every natural number n ∈ ω
and a morphism fn : Xn+1 → Xn for every n ∈ ω. The ξn are also called the
coherence morphism of the cochain.

It is clear that we can compose the morphisms fn to obtain a morphisms
fmn = fn ◦ · · · ◦ fm−1 : Xm → Xn for all n,m ∈ ω with n ≤ m, where fnn =
idXn

: Xn → Xn is just the identity on Xn.
We call the countable cochain (Xn, fn)n∈ω epic, if all the morphisms fn are

epic in C.
A limit of the countable cochain (Xn, fn)n∈ω is an object Xω together with

projection morphisms pn : Xω → Xn such that pn = fn ◦ pn+1 for all n ∈ ω
which satisfies the following universal property: For every object T together
with morphisms gn : T → Xn, satisfying gn = fn ◦ gn+1 for all n ∈ ω, there is a
morphism u : T → Xω that is unique for having the property that gn = pn ◦ u
for all n ∈ ω. As for the product, and the terminal object, one can show, using
this universal property, that any two limits of a given cochain are isomorphic.

For every cochain (Xn, ξn)n∈ω in the category Unc we can define its limit Xω

to be the uncertainty space that has as its states all sequences x = (x0, x1, . . . , xn, . . . ),
where xn is a state from Xn for all n ∈ ω, which are coherent in the sense
that xn = ξn(xn+1) for all n ∈ ω. We can then consider the projections
ζn : Xω → Xn, x 7→ xn for each n ∈ ω. The measurable sets of the limit Xω

are defined to be all sets of the form (ζn)−1[E] for some n ∈ ω and measurable
set E of Xn. It is clear that this definition turns the projections ζn : Xω → Xn

into measurable functions. Moreover, using that all ξn are measurable, one can
show that the measurable sets defined in this way are closed under finite unions
and intersections. To check that this definition of the limit has the universal
property observe that for any measurable space T with measurable functions
ϕn : T → Xn, such that ϕn = ξn ◦ ϕn+1 for each n ∈ ω, we can define the
unique morphism µ : T → Xω such that µ(t) = (ϕ0(t), ϕ1(t), . . . , ϕn(t), . . . ) for
all t ∈ T .

One can also define the limit for every cochain ((X0,n, X1,n), (ξ0,n, ξ1,n))n∈ω
in Unc2. This can be done component-wise, meaning that for each of the com-
ponents of the pairs representing objects and morphism in Unc2 we can just
use the construction for Unc, described in the previous paragraph. For instance
the limit itself is just the object (X0,ω, X1,ω) such that X0,ω and X1,ω are the
limits of (X0,n, ξ0,n)n∈ω and (X1,n, ξ1,n)n∈ω in Unc. It is not hard to see that
this again has the required universal property.

A functor F from C to D preserves a limit Xω of a countable cochain
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(Xn, fn)n∈ω if FXω is the limit for the countable cochain (FXn, Ffn)n∈ω.
The main technical result in this appendix is that the functor Γ preserves

limits of epic countable cochains. In the proof of this claim in Section B.3
we investigate the preservation of limits of cochains under the contravariant
functors F from Unc to Set and C from Set to Unc. For this purpose we need
to understand limits of cochains in Setop. Because morphisms in Setop are
just morphisms from Set with swapped domain and codomain we have that a
countable cochain (Xn, fn)n∈ω in Setop is just what is called a countable chain
in Set, meaning that the Xn are all sets and the fn : Xn → Xn+1 are functions
that now go from Xn to Xn+1. Moreover the limit Xω of this cochain in Setop

is what is actually called a colimit of chain in Set. The colimit Xω of a chain
(Xn, fn)n∈ω in Set can be described concretely as the disjoint union of all the
Xn modulo the equivalence relation that identifies an xn from Xn with an xm
from Xm if there is some k ≥ n,m such that fnk (xn) = fmk (xm). Clearly, we can
then define inclusions pnω : Xn → Xω for all n ∈ ω. The universal property of
this colimit is just the same as the universal property of limit in Setop with all
morphisms turned around: For every set T with functions hn : Xn → T such
that hn = hn+1 ◦ fn for each n ∈ ω, there is a unique function u : Xω → T such
that hn = u ◦ pnω for all n ∈ ω.

A.6 Natural transformations

Let F and G be functors that both go from a category C to a category D.
Then a natural transformation η from F to G is an assignment of a morphism
ηX : FX → GX in D to every object X in C such that for all morphisms
f : X → Y in C it holds that Gf ◦ ηX = ηY ◦ Ff .

An example of natural transformation from this paper is the measurable
function λX : ΠX → ΓX that is defined for every uncertainty space X. Propo-
sition 2, which is proven in Section D.3, shows that λ is a natural transformation
from the functor Π to the functor Γ.

B Properties of Γ

In this part of the appendix we prove crucial properties of the functor Γ which
are needed for the coalgebraic construction of the universal choice structure.
In case the reader tries to get an overview of the construction of the universal
choice structure, they might first skip through this section and then refer back
as needed when reading Sections C and D.

B.1 Γ preserves epic morphisms

We show that Γ preserves epic morphisms, which in Unc are just surjective
measurable functions. Because Γ is the composition of F and C it suffices to
show that F maps surjective measurable functions to injective functions in Set
and that C maps injective functions to surjective measurable functions. It is
easy to check the former using the definition of F and the cancellation property
of epic morphism. That C maps injective functions to surjective measurable
functions is shown in the following lemma:

Lemma 1. If f : X → Y is injective then Cf : CY → CX is surjective.
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Proof. It is easy to see that as f is injective it holds for all U ⊆ X that
f−1[f [U ]] = U . To check that Cf is surjective consider any C ∈ CX. We
have to find a C ′ ∈ CY such that Cf(C ′) = C. Define C ′ such that C ′(K) =
f [C(f−1[K])] for all finite K ⊆ Y . The following equality then follows for all
L ⊆ X:

Cf(C ′)(L) = f−1[C ′(f [L])] ∩ L
= f−1[f [C(f−1[f [L]])]] ∩ L
= C(L) ∩ L = C(L).

B.2 Γ preserves monic morphisms to discrete spaces

We show that Γ preserves monic morphisms, if the codomain has the discrete
algebra. We again split the problem into two steps. First we show that F
maps every surjective measurable function with a discrete codomain to an in-
jective functions and then we show that C maps injective functions to surjective
measurable functions.

Lemma 2. If the measurable function ϕ : X → Y is injective and Y has the
discrete algebra then the function Fϕ : FY → FX is surjective.

Proof. Pick any f ∈ FX. We want to find a f ′ ∈ FY such that f = f ′ ◦ ϕ. We
define f ′(y) = f(x), if there is some x ∈ X such that ϕ(x) = y, and f ′(y) = z′

for an arbitrary z′ ∈ Z otherwise. This is well-defined because ϕ is injective.
The function f ′ is trivially measurable because Y has the discrete algebra and
f = f ′ ◦ ϕ by definition of f ′.

Lemma 3. If f : X → Y is surjective then Cf : CY → CX is injective.

Proof. It is easy to see that as f is surjective it holds for all U ⊆ Y that
f [f−1[U ]] = U . To check that Cf is injective consider any two C,C ′ ∈ CY such
that Cf(C) = Cf(C ′). We have to show that then C(K) = C ′(K) for all finite
K ⊆ Y . Using that f [f−1[U ]] = U we can compute:

Cf(C)(f−1[K]) = f−1[C(f [f−1[K]])] ∩ f−1[K]

= f−1[C(K)] ∩ f−1[K] = f−1[C(K) ∩K] = f−1[C(K)]

Similarly we obtain also for C ′ that Cf(C ′)(f−1[K]) = f−1[C ′(K)]. From the
assumption that Cf(C) = Cf(C ′) it follows that f−1[C(K)] = f−1[C ′(K)].
Because f is surjective it follows that C(K) = C ′(K).

B.3 Γ preserves limits of epic countable cochains

In this section we prove the main technical result of this paper:

Theorem 4. Γ preserves limits of countable epic cochains. This means that
whenever we have a limit Xω, with projections ζn : Xω → Xn for all n ∈ ω, of
a countable cochain (Xn, ξn)n∈ω in which the coherence morphisms ξn are epic
for all n, then ΓXω, with projections Γζn : ΓXω → ΓXn, satisfies the universal
property of the limit of the cochain (ΓXn,Γξn)n∈ω, i.e., for every uncertainty
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space T together with measurable functions ϕn : T → ΓXn for all n ∈ ω with
ϕn = Γξn ◦ ϕn+1 there is a unique measurable function µ : T → ΓXω such that
ϕn = Γζn ◦ µ for all n ∈ ω.

For the proofs from later sections in this appendix we need the the following
corollary of Theorem 4.

Corollary 1. Γ♥ preserves limits of countable epic cochains.

We split the proof of Theorem 4 into two steps. First, we show that F turns
limits of epic cochains in Unc into colimits of chains in Set. Second, we show
that C turns colimits of chains Set into limits of cochains in Unc. It follows that
Γ preserves limits of epic cochains because Γ is defined as the composition of F
and C.

We first need a technical lemma stating a property that also plays an im-
portant role in Proposition 1 of [DT08]:

Lemma 4. Consider a countable cochain (Xn, ξn)n∈ω, with coherence mor-
phisms ξn : Xn+1 → Xn, and let Xω, with projections ζn : Xω → Xn, be its
limit. Then, for every act f ∈ FXω there is a natural number n ∈ ω such that
for every natural number m ≥ n there is an act f ′ ∈ FXm such that f = f ′◦ζm.

Proof. Because f : Xω → Z is measurable and Z is a finite set we have that
for every z ∈ Z the set f−1[{z}] is measurable in Xω. By the definition of the
algebra on Xω this means that for every z ∈ Z there is some nz ∈ ω such that
f−1[{z}] = ζ−1

nz
[Ez] for some measurable set Ez in Xnz

. Let n be the maximum
of all nz for z ∈ Z. This maximum is a natural number because Z is finite.

Consider now any m ≥ n. We have that for every z ∈ Z there is some
measurable Em

z = (ξmnz
)−1[Ez] ⊆ Xm such that f−1[{z}] = ζ−1

m [(ξmnz
)−1[Ez]] =

ζ−1
m [Em

z ]. We can then argue that in the image of ζm the Ez essentially partition
Xm. More precisely, we show that for every x ∈ Xω and z ∈ Z if ζm(x) ∈ Em

z

then z = f(x). To see this consider arbitrary such x ∈ Xω and z ∈ Z with
ζm(x) ∈ Em

z . Because Em
z = (ξmnz

)−1[Ez] it follows that ζnz
(x) = ξmnz

(ζm(x)) ∈
Ez. And because Ez was chosen such that ζ−1

nz
[Ez] = f−1[{z}] it follows that

f(x) = z.
We define the act f ′ ∈ FXm such that f ′(x) = z for some fixed z such

that x ∈ Em
z , if there is such a z, and f ′(x) is an arbitrary element of Z

otherwise. The latter is always possible because Z is not empty. It then follows
immediately from the argument in the previous paragraph that f(x) = f ′◦ζm(x)
for all x ∈ xω.

Proposition 3. F preserves limits of countable epic cochains. That is, it maps
limits of cochains of uncertainty spaces to colimits of chains of sets.

Proof. Consider a cochain (Xn, ξn)n∈ω of uncertainty spaces and let Xω, to-
gether with projections ζn : Xω → Xn, be its limit. We show that FXω,
together with the inclusions Fζn : FXn → FXω has the universal property of
the colimit of the chain (FXn, F ξn)n∈ω. For this purpose consider any set T
together with functions hn : Xn → T such that hn = hn+1 ◦Fξn for each n ∈ ω.
We need to define the function u : FXω → T such that hn = u ◦ Fζn for all
n ∈ ω and show that it is unique with that property.

To define u(f) for some act f ∈ FXω we use Lemma 4. From this lemma it
follows that there is some k and act f ′ ∈ FXk such that f = f ′ ◦ ζk = Fζk(f ′).
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We then set u(f) = hk(f ′). To check that this satisfies hn(g) = u ◦ Fζn(g) for
all n ∈ ω and g ∈ FXn consider the act Fζn(g) ∈ FXω. By definition of u we
have that u(Fζn(g)) = hk(f ′) for some f ′ ∈ FXk such that Fζn(g) = Fζk(f ′).
We need to show that hk(f ′) = hn(g). Assume that n ≤ k. This is without
loss of generality because we are only using the completely symmetric fact that
Fζn(g) = Fζk(f ′). Because ζn = ξkn ◦ ζk, it follows from Fζn(g) = Fζk(f ′) that
f ′ ◦ ζk = g ◦ ζn = g ◦ ξkn ◦ ζk. We obtain that f ′ = g ◦ ξkn = Fξkn(g) because ζk is
epic. From this we can then conclude that hk(f ′) = hn(g) since hk = hn ◦ Fξkn.

That u is unique also follows from Lemma 4. The possible values of u(f)
are completely determined because f = Fζn(f ′) for some n and f ′ ∈ Xn and
we need to ensure that hn(f ′) = u ◦ Fζn(f ′).

Lemma 5. Consider a chain (Xn, ξn)n∈ω of sets and let Xω, with inclusions
ιn : Xn → Xω for all n, be its colimit. Then for each finite K ⊆ Xω there is an
m ∈ ω and a K ′ ⊆ Xm such that ιm[K ′] = K.

Proof. By the definition of the colimit of a countable chain we have that for
every k ∈ Xω there exists some k′ ∈ Xmk

such that ιmk
(k′) = k. Let m be the

maximum of the finitely many mk for all k ∈ K and let then K ′ = {ξmk
m (k′) ∈

Xm | k ∈ K}. It then holds that ιm[K ′] = K because ιm◦ξmk
m (k′) = ιmk

(k′) = k
for every k ∈ K.

Proposition 4. C preserves colimits of countable chains. That is, it maps
colimits of chains of sets onto limits of cochains of uncertainty spaces.

Proof. Consider a chain (Xn, ξn)n∈ω of sets and let Xω, with inclusions ιn :
Xn → Xω for all n, be its colimit. We show that CXω, with the Cιn : CXω →
CXn as the projections, has the universal property of the limit of the cochain
(CXn, Cξn)n∈ω. Hence, consider any uncertainty space T together with measur-
able functions ϕn : T → CXn, satisfying ϕn = Cξn ◦ ϕn+1, for all n ∈ ω. We
need to show that there is a unique measurable function µ : T → CXω such that
Cιn ◦ µ = ϕn for all n ∈ ω.

We first describe how to define the choice function µ(t) ∈ CXω on a finite
set K ⊆ Xω. Let m ∈ ω be the least number such that there exists a K ′ ⊆ Xm

such that ιm[K ′] = K. Such a number exists because of Lemma 5. Also observe
that the choice of m and K ′ only depends on K but not on t. This is a property
which we exploit below to show that µ is measurable. We then set the value of
the choice function µ(t) on K to be

µ(t)(K) = ιm[ϕm(t)(K ′)], (2)

where ϕm(t)(K ′) ⊆ K ′ denotes the elements of K ′ selected by the choice func-
tion ϕm(t) ∈ CXm. This is well-defined because we have ιm[ϕm(t)(K ′)] ⊆
ιm[K ′] = K

To see that µ is measurable it suffices to check that the preimage µ−1[BK
L ] ⊆

T of a basic measurable set BK
L = {C ∈ CXω | C(K) ⊆ L} is measurable in T .

Hence, fix finite K and L with L ⊆ K and let m ∈ ω and K ′ be defined from
K as explained above. We are now going to show that µ−1[BK

L ] = ϕ−1
m [BK′

L′ ],
where L′ = ι−1

m [L]. Because ϕm : T → ΓXm is assumed to be measurable, it
then follows that µ−1[BK

L ] is measurable too. By unfolding the definitions one
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sees that the claim that µ−1[BK
L ] = ϕ−1

m [BK′

L′ ] is equivalent to the claim that
for all t ∈ T

µ(t)(K) ⊆ L iff ϕm(t)(K ′) ⊆ ι−1
m [L].

By the definition of µ(t) above we see that the left side of this equivalence is the
same as ιm[ϕm(t)(K ′)] ⊆ L, which is clearly equivalent to ϕm(t)(K ′) ⊆ ι−1

m [L].
We need to verify that ϕn = Cιn ◦ µ for all n ∈ ω. This requires that for

every t ∈ T the choice functions ϕn(t) and Cιn ◦µ(t) are the same. Hence, they
need to have the same value on every finite set L′ ⊆ Xn.

First let K = ιn[L′] and recall the definitions to see that

(Cιn ◦ µ(t))(L′) = ι−1
n [µ(t)(ιn[L′])] ∩ L′ = ι−1

n [ιm[ϕm(t)(K ′)]] ∩ L′, (3)

for the m ∈ ω and the finite set K ′ ⊆ Xm that are defined from K as described
above. Our choice of K ′ above ensures that ιm[K ′] = K = ιn[L′]. Hence for
every k′ ∈ K ′ there is some l′ ∈ L′ such that ιm(k′) = ιn(l′) and conversely for
every l′ ∈ L′ there is a k′ ∈ K ′ such that ιm(k′) = ιn(l′). By the definition of
identity for elements in the colimit Xω it follows that for each such pair k′ ∈ Xm

and l′ ∈ Xn with ιm(k′) = ιn(l′) there is some j ∈ ω such that ξmj (k′) = ξnj (l′).
Let i be the maximum of all those j ∈ ω, which exists because there are finitely
many pairs (k′, l′) ∈ K ′×L′. It then clearly holds that ξmi (k′) = ξni (l′), whenever
ιm(k′) = ιn(l′) for (k′, l′) ∈ K ′ × L′. Define then L ⊆ Xi to be the finite set

L = ξmi [K ′] = ξni [L′].

Because ϕn = Cξni ◦ ϕi we obtain that

ϕn(t)(L′) = (ξni )−1[ϕi(t)(ξ
n
i [L′])] ∩ L′ = (ξni )−1[ϕi(t)(L)] ∩ L′.

Similarly, because ϕm = Cξmi ◦ ϕi we obtain

ϕm(t)(K ′) = (ξmi )−1[ϕm(t)(ξmi [K ′])] ∩K ′ = (ξmi )−1[ϕi(t)(L)] ∩K ′.

To prove ϕn(t)(L′) = (Cιn ◦ µ(t))(L′) it thus suffices by (3) to show that

(ξni )−1[U ] ∩ L′ = ι−1
n [ιm[(ξmi )−1[U ] ∩K ′]] ∩ L′ (4)

for the set U = ϕi(t)(L) ⊆ L.
For the left-to-right inclusion of (4) consider any l′ ∈ L′ such that ξni (l′) ∈ U .

We need that l′ ∈ ι−1
n [ιm[(ξmi )−1[U ]∩K ′]]. From the definition of L we get that

there is then some k′ ∈ K ′ such that ξmi (k′) = ξni (l′). Hence k′ ∈ (ξmi )−1[U ]∩K ′
and ιn(l′) = ιm(k′). The latter two directly entail that l′ ∈ ι−1

n [ιm[(ξmi )−1[U ] ∩
K ′]].

For the right-to-left inclusion of (4) consider any l′ ∈ L′ such that ιn(l′) =
ιm(k′) for some k′ ∈ (ξmi )−1[U ] ∩ K ′. With the definition of i above it then
follows from ιn(l′) = ιm(k′) that ξni (l′) = ξmi (k′) ∈ U . Hence, l′ ∈ (ξmi )−1[U ]
and we are done.

Lastly, we show that µ(t) is completely determined by the requirement that
ϕn(t) = Cιn ◦ µ(t) for all n ∈ ω. Consider any ν : T → CXω such that
ϕn(t) = Cιn ◦ ν(t) for all n ∈ ω. We argue that then ν(t)(K) = µ(t)(K) for
the µ defined as above and all finite K ⊆ Xω. Let m ∈ ω and K ′ ⊆ Xm as
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in the definition of µ above, i.e., such that ιm[K ′] = K. The requirement that
ϕm(t) = Cιm ◦ ν(t) means that

ϕm(t)(K ′) = ι−1
m [ν(t)(ιm[K ′])] ∩K ′ = ι−1

m [ν(t)(K)] ∩K ′.

One can see that this entails that

ιm[ϕm(t)(K ′)] = ν(t)(K).

The left-to-right inclusion is trivial and the other inclusion follows because
ν(t)(K) ⊆ K and ιm[K ′] = K. Therefore, we have shown that ν(t)(K) equals
the expression that we use in (2) to define µ(t)(K).

As an immediate consequence of the previous two propositions we obtain
the main result of this section.

C Proofs for Section 3

Theorems 1 and 2 follow from the results about Γ together with well-known
results [Wor99] about the final coalgebra. In the following, we sketch how these
results from the general theory of coalgebra apply to the setting of choice struc-
tures.

C.1 Preliminary observations

Theorems 1 and 2 concern the the universal choice structure that is obtained
from the choice hierarchies as described in Section 3.2. Let us first see how this
fits into the coalgebraic set-up.

One can view the two uncertainty spaces Ωa,n and Ωb,n on the n-th level
in the choice hierarchy as defining an object Ωn = (Ωa,n,Ωb,n) in the category
Unc2. In fact one can define these objects directly, just using the functor Γ♥ as
follows: We start with Ω0 = >, where > is the terminal object in Unc2, and then
define inductively Ωn+1 = Γ♥Ωn. It is easy to see that with the exception of the
0-th level, which is omitted from the discussion in the main text, this yields the
same sequence of pairs of uncertainty spaces as defined in Section 3.2. Similarly,
the coherence morphism ξa,n and ξb,n can also be defined directly in Unc2 with
ξ0 = !Γ♥> : Γ♥> → > and inductively ξn+1 = Γ♥ξn : Γ♥Ωn+1 → Γ♥Ωn. Thus,
the sequence (Ωn, ξn)n∈Ω forms a countable cochain in Unc2.

The definition of the uncertainty spaces Ωa and Ωb of types in the the uni-
versal choice structures from Section 3.2 is such that these are precisely the
limits of the countable cochains (Ωa,n, ξa,n)n∈ω and (Ωb,n, ξb,n)n∈ω in Unc. Be-
cause limits in Unc2 are computed component-wise it follows that the object
Ω = (Ωa,Ωb) in Unc2 is the limit of the countable cochain (Ωn, ξn)n∈ω. Also
recall that the limit comes with projections ζn = (ζa,n, ζb,n) : Ω→ Ωn back into
the chain such that ζn = ξn ◦ ζn+1.

The crucial observation behind Theorems 1 and 2 is then that the functor
Γ♥ on Unc2 preserves the limit of the epic cochain (Ωn, ξn). This follows from
Corollary 1, which states that Γ♥ preserves limits of epic countable cochains.
To apply Corollary 1 to the cochain (Ωn, ξn)n∈ω we need to check that the
coherence morphisms ξn for all n ∈ ω are epic. This can be checked directly by
an induction over the definition of the ξn. In the base step ξ0 = (ξa,0, ξb,0), and
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ξa,0 = Γπ1, where π1 is the projection out of a product. Because this projection
is epic, and by the argument in Section B.1 Γ preserves epic morphisms, it follows
that ξa,0 is epic. We reason analogously for ξb,0. That ξn+1 = (ξa,n+1, ξb,n+1) =
(Γ(idSb

×ξb,n),Γ(idSa×ξa,n)) is epic, also follows easily because Γ preserves epic
morphisms.

C.2 Theorem 1

Next consider the object Γ♥Ω of Unc2. For this object we can define morphisms
into the cochain (Ωn, ξn)n∈ω by setting τ0 = !Γ♥Ω : Γ♥Ω → Ω0 and τn+1 =
Γ♥ζn : Γ♥Ω → Γ♥Ωn, which satisfy τn = ξn ◦ τn+1 for all n. From Theorem 4
it follows that Γ♥Ω together with the projections Γ♥ζn = τn+1 is a colimit
of the cochain (Γ♥Ωn,Γ

♥ξn)n∈ω, which by definition is the same as the chain
(Ωn+1, ξn+1)n∈ω. We can use this observation to show that Γ♥Ω together with
the τn also satisfies the universal property of the limit of the cochain (Ωn, ξn)n∈ω.
To this aim take any further object T of Unc2 together with morphisms gn :
T → Ωn such that gn = ξn ◦ gn+1 for all n ∈ ω. We now just consider this
gn without g0 as morphism into the chain (Γ♥Ωn,Γ

♥ξn)n∈ω satisfying that
gn+1 = ξn+1 ◦ gn+2 = Γ♥ξn ◦ gn+1 for all n ∈ ω. Because Γ♥Ω is a limit
of this chain there must be then a unique morphism u : T → Γ♥Ω such that
gn+1 = Γ♥ζn ◦u = τn+1 ◦u for all n ∈ ω. Additionally, we have that g0 = τ0 ◦u
holds trivially because on both sides of the equation we have a morphism into
the terminal object > = Ω0 of Unc2.

We have now seen that both Ω and Γ♥Ω satisfy the universal property of
limit for the cochain (Ωn, ξn)n∈ω. Theorem 1 then follows because there can be
only one such object up to isomorphism.

More precisely, the isomorphism is given by the unique morphism µ =
(µa, µb) : Ω → Γ♥Ω such that ζn = τn ◦ µ for all n ∈ ω, which exists because
Ω is a limit. If one considers the components of this morphism one obtains the
isomorphism µa : Ωa → Γ(Sb ×Ωb) and µb : Ωb → Γ(Sa ×Ωa) that are referred
to in the formulation of Theorem 1.

C.3 Theorem 2

We now sketch the proof of Theorem 2. Consider an arbitrary choice structure
X = (Ta, Tb, θa, θb), presented as a coalgebra (T, θ) = ((Ta, Tb), (θa, θb)) for Γ♥.
We need to show that there is a unique morphism υ from (T, θ) to the universal
choice structure (Ω, µ).

To prove the existence of υ first consider the measurable functions υ0 =
!T : T → Ω0 and the inductively defined υn+1 = Γ♥υn ◦ θ : T → Ωn+1.
By an induction over n we can show that these measurable functions satisfy
υn = ξn ◦υn+1. In the base case this is clear because there is only one morphism
from T to the terminal object Ω0 = >. For the inductive step we calculate as
follows:

υn+1 = Γ♥υn ◦ θ = Γ♥(ξn ◦ υn+1) = Γ♥ξn ◦ Γ♥υn+1 ◦ θ = ξn+1 ◦ υn+2.

Because Ω is defined as the limit of the sequence (Ωn, ξn)n∈Ω it follows that
there is a unique morphism υ : T → Ω with the property that for all n ∈ ω

υn = ζn ◦ υ. (5)
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It remains to be seen that υ is a morphism of choice structures and that it
is unique with this property.

To show that υ : T → Ω is a morphism from (T, θ) to (Ω, µ) we need to
verify that µ ◦ υ = Γ♥υ ◦ θ. We show this by proving that υn = τn ◦ µ ◦ υ and
υn = τn ◦ Γ♥υ ◦ θ hold for all n ∈ ω. The equality µ ◦ υ = Γ♥υ ◦ θ then follows
from the universal property for the limit Γ♥Ω of (Ωn, ξn)n∈ω, with projections
τn : Γ♥Ω→ Ωn.

To see that υn = τn ◦ µ ◦ υ we use that by its definition in Section C.2 µ
satisfies τn ◦ µ = ζn. The claim then reduces to (5).

To see that υn = τn ◦Γ♥υ ◦θ we distinguish two cases. If n = 0 we have that
both υ0 and τ0 ◦ Γ♥υ ◦ θ are morphisms from T to the terminal object Ω0 = >
of Unc2. By the universal property of the terminal object they must be equal.

If n is strictly positive we can unfold the definition of υn+1, use (5) and then
unfold the definition of τn+1 to obtain the following computation

υn+1 = Γ♥υn ◦ θ = Γ♥(ζn ◦ υ) ◦ θ = Γ♥ζn ◦ Γ♥υ ◦ θ = τn+1 ◦ Γ♥υ ◦ θ.

To prove that υ is the only morphism of choice structures from (T, θ) to (Ω, µ)
consider any other morphism υ′ : T → Ω in Unc2 such that µ ◦ υ′ = Γ♥υ′ ◦ θ.
We show that then υn = ζn ◦ υ′ for all n ∈ ω, from which is follows that υ′ = υ
because υ is defined as the unique morphism with the property (5). To prove
υn = ζn ◦ υ′ we use an induction on n. In the base case we again have that
υ0 and ζ0 ◦ υ′ must be equal because they are both morphism from T to the
terminal object Ω0 = > of Unc2. In the inductive step we use the following
computation:

υn+1 = Γ♥υn ◦ θ definition of υn+1

= Γ♥(ζn ◦ υ′) ◦ θ induction hypothesis

= Γ♥ζn ◦ Γ♥υ′ ◦ θ Γ♥ functor

= τn+1 ◦ Γ♥υ′ ◦ θ definition of τn+1

= τn+1 ◦ µ ◦ υ′ assumption on υ′

= ζn+1 ◦ υ′ uniqueness property of µ

D Proofs for Section 4

D.1 Preliminary observations

It is easy to check that P, and hence also Π and Π♥ are functors, that is,
they preserve identities and composition. The construction of the universal
preference structure can then be carried out analogously to the construction for
the universal choice structure given above. In fact it is only required to reprove
a variant of Proposition 4 for the functor P, which is done implicitly in the
proofs of Section 3 from [DT08].

D.2 Proposition 1

We now argue that the map mX : PX → CX is injective at every set X. To
show this assume we have two preference relations 4 and 4′ over X such that
mX(4) = mX(4′). We need to argue that x 4 x′ iff x 4′ x′ for all x, x′ ∈ X.
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Since the situation is symmetric it suffices to check one direction. Hence assume
that x 4 x′. We want to show that x 4′ x′. It suffices to consider the case
where x 6= x′ because otherwise x 4′ x′ follows because 4′ is reflexive.

As x 6= x′ and x 4 x′ it follows that it can not be the case that x′ 4 x,
because otherwise there would be a contradiction with the anti-symmetry of 4.
As we explain in Remark 1 this use of anti-symmetry is crucial. As x 4 x′ and
not x′ 4 x it follows that x′ is the only maximal element of the set {x, x′} in
the relation 4. Hence mX(4)({x, x′}) = {x′}.

By the assumption that mX(4) = mX(4′) it follows that mX(4′)({x, x′}) =
{x′}. But this is only possible if x 4′ x′, which is what we had to show.

D.3 Proposition 2

Proposition 2 states that λ is a natural transformation from the functor Π to
the functor Γ. It is easy to check that this reduces to the claim that m is a
natural transformation from P to C. This means that we need to show that for
every function f : X → Y it holds that mX ◦ Pf = Cf ◦mY . Note that here
the Y and X are swapped because P and C are contravariant functors.

Fix any function f : X → Y , preference relation 4 ∈ PY and finite set
K ⊆ X. We have to show that

mX(Pf(4))(K) = Cf(mY (4))(K).

For the left-to-right inclusion take any x ∈ mX(Pf(4))(K). We need
to show that x ∈ Cf(mY (4))(K). This means we want to show that x ∈
f−1[mY (4)(f [K])] ∩K. Our assumption that x ∈ mX(Pf(4))(K) means that
x is a maximal element of the set K in the order 4f = Pf(4). Hence x ∈ K
and it remains to show that x ∈ f−1[mY (4)(f [K])], which means that f(x) is a
maximal element of the set f [K] in the order 4. So consider any other element
of f [K], which must be of the form f(x′) for some x′ ∈ K, and assume that
f(x) 4 f(x′). We need to show that then also f(x′) 4 f(x). From equation (1)
in Section 4.1 defining 4f it follows that x 4f x′. Then we can use that x is
a maximal element in 4f to conclude that x′ 4f x. Using (1) again we then
obtain the required f(x′) 4 f(x).

Now consider the right-to-left inclusion. Take any x ∈ f−1[mY (4)(f [K])] ∩
K. We need to show that x ∈ mX(Pf(4))(K), which means that x is a maximal
element of the set K in the order 4f = Pf(4). Clearly x ∈ K. To show that x
is a 4f -maximal element in K pick any other x′ in K with x 4 x′. We need to
show that x′ 4 x. From x 4 x′ it follows with (1) that f(x) 4 f(x′). We now
use that x ∈ f−1[mY (4)(f [K])]. From this it follows that f(x) ∈ mY (4)(f [K]).
This means that f(x) is maximal in the set f [K]. Because x′ ∈ K it holds that
also f(x′) is in the set f [K]. By the maximality of f(x) in f [K] it follows from
f(x) 4 f(x′) that f(x′) 4 f(x). With (1) we obtain x′ 4 x.

D.4 Theorem 3

In the proof of Theorem 3 we need a further concept from category theory which
is a generalization of monic morphism. A family of morphism (fj : X → Y )j∈J
for any index set J is jointly monic if for all further morphisms g, h : T → Y it
holds that if fj ◦ g = fj ◦ h for all j ∈ J then already g = h.
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Families of monic morphism are closely related to limits of cochains. Us-
ing the universal property of the limit Xω with projections ζn of a cochain
(Xn, fn)n∈ω it is easy to show that the family of all projections (pn)n∈ω is
jointly monic. Moreover, if we have another object T with a jointly monic
family (gn : T → Xn)n∈ω such that gn = fn ◦ gn+1 for all n then the unique
morphism u : T → Xω that exists because of the universal property of the limit
Xω is monic.

To prove Theorem 3, let U ′ = (Ω′, µ′) be the universal preference structure,
presented as coalgebra for Π♥. We assume that Ω′, µ′, Ω′n, ζ ′n, . . . are defined
in the same way as the objects Ω, µ, Ωn, ζn, . . . are defined in Section C for the
universal choice structure, just using Π♥ instead of Γ♥.

Then consider the choice structure λ(U ′) = (Ω′, λ♥Ω′ ◦ µ′) where λ♥ is a
natural transformation from Π♥ to Γ♥ that is defined such that it applies λ
componentwise. Note that this definition of λ(U ′) corresponds to the one given
in Section 4.3. Let υ be the unique morphism from λ(U ′) to the universal choice
structure U that exists according to Theorem 2.

The claim of Theorem 3 is that this υ is monic. Because in Theorem 2
υ was obtain using the universal property of the limit Ω from the family of
approximations (υn : Ω′n → Ωn)n∈ω it suffices to show that this family is jointly
monic.

Define morphisms δ0 = !Ω′
0

: Ω′0 → Ω0 and inductively δn+1 = Γ♥δn ◦ λ♥Ω′
n

:

Ω′n+1 → Ωn+1. One can show with an induction over n that all these δn are

monic. The base case this holds because Ω′0 is the terminal object of Unc2 and
in the inductive step we use Proposition 1 and the fact hat Γ♥ preserves monics,
which we show in Section B.2. The latter needs that the image of the injective
measurable function δn : Ω′n → Ωn that is preserved has the discrete algebra.
This is the case because one can show that if Sa and Sb are finite then so are
all the Ω′n.

We then prove by induction on n that

υn = δn ◦ ζ ′n. (6)

It follows that the υn are jointly monic because the ζ ′n are projections out of
the limit Ω′ and hence jointly monic and the δn are all monic.

For the base case, of (6), we have that υ0 = δ0 ◦ ζ ′0 because both morphism
map to the terminal object Ω0 of Unc2.

For the inductive step we use the following computation:

υn+1 = Γ♥υn ◦ λ♥Ω′ ◦ µ′ definition of υn+1

= Γ♥(δn ◦ ζ ′n) ◦ λ♥Ω′ ◦ µ′ induction hypothesis

= Γ♥δn ◦ Γ♥ζ ′n ◦ λ♥Ω′ ◦ µ′ Γ♥ functor

= Γ♥δn ◦ λ♥Ω′
n
◦Π♥ζ ′n ◦ µ′ λ♥ natural transformation

= Γ♥δn ◦ λ♥Ω′
n
◦ τ ′n+1 ◦ µ′ definition of τ ′n+1

= Γ♥δn ◦ λ♥Ω′
n
◦ ζ ′n+1 uniqueness property of µ′

= δn+1 ◦ ζ ′n+1 definition of δ′n+1
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