
Size measures and alphabetic equivalence in the
µ-calculus

Clemens Kupke
clemens.kupke@strath.ac.uk
University of Strathclyde

Glasgow, Scotland

Johannes Marti
johannes.marti@gmail.com

ILLC, University of Amsterdam
Amsterdam, The Netherlands

Yde Venema
y.venema@uva.nl

ILLC, University of Amsterdam
Amsterdam, The Netherlands

Abstract
Algorithms for solving computational problems related to
the modal µ-calculus generally do not take the formulas
themselves as input, but operate on some kind of represen-
tation of formulas. This representation is usually based on a
graph structure that one may associate with a µ-calculus for-
mula. Recent work by Kupke, Marti & Venema showed that
the operation of renaming bound variables may incur an ex-
ponential blow-up of the size of such a graph representation.
Their example revealed the undesirable situation that stan-
dard constructions, on which algorithms for model checking
and satisfiability depend, are sensitive to the specific choice
of bound variables used in a formula.
Our work discusses how the notion of alphabetic equiv-

alence interacts with the construction of graph representa-
tions of µ-calculus formulas, and with the induced size mea-
sures of formulas.We introduce the condition ofα -invariance
on such constructions, requiring that alphabetically equiv-
alent formulas are given the same (or isomorphic) graph
representations.
Our main results are the following. First we show that if

two µ-calculus formulas are α-equivalent, then their respec-
tive Fischer-Ladner closures have the same cardinality, up
to α-equivalence. We then continue with the definition of
an α-invariant construction which represents an arbitrary
µ-calculus formula by a graph that has exactly the size of the
quotient of the closure of the formula, up to α-equivalence.
This definition, which is itself based on a renaming of vari-
ables, solves the above-mentioned problem discovered by
Kupke et al.

CCS Concepts • Theory of computation→Modal and
temporal logics; Logic and verification;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LICS ’22, August 2–5, 2022, Haifa, Israel
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-9351-5/22/08. . . $15.00
https://doi.org/10.1145/3531130.3533339

Keywords modalmu-calculus, complexity, alphabetic equiv-
alence, model checking

ACM Reference Format:
Clemens Kupke, Johannes Marti, and Yde Venema. 2022. Size mea-
sures and alphabetic equivalence in the µ-calculus. In 37th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS) (LICS ’22),
August 2–5, 2022, Haifa, Israel. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3531130.3533339

1 Introduction
1.1 The modal µ-calculus
The modal µ-calculus [2, 3, 8, 11] is an extension of proposi-
tional modal logic by means of least- and greatest fixpoint
operators, which enable the expression of recursive state-
ments. Introduced by Kozen [14] in its current form, it has
emerged in theoretical computer science as one of the key
logical formalism used for specifying properties of ongoing
processes [20]. Seen from a logical perspective, the formal-
ism inherits many pleasant metalogical properties from basic
modal logic, including uniform interpolation and other in-
teresting model-theoretic properties [6, 10, 13], a natural
complete axiomatisation [14, 21] and a complete cut-free
proof system [1].
In line with the importance of the µ-calculus as a specifi-

cation language, various computational aspects of the for-
malism have been investigated. The two problems at the
center of these investigations concern satisfiability (given
a µ-calculus formula ξ , is it satisfiable in some transition
system?) and model checking (given a transition system S, a
state s in S and a µ-calculus formula ξ , is ξ true at s in S?)
The satisfiability problem was rather quickly shown to be de-
cidable [15], while some years later Emerson & Jutla [9] gave
an exponential time algorithm for satisfiability checking. De-
termining the complexity of the model checking problem,
however, has turned out to be challenging. There is an ob-
vious algorithm that runs in time (k · n)d , where k,n and d
are respectively the size of the transition system, the size
of the formula, and the alternation depth of the formula,
i.e., the maximum number of alternating least and greatest
fixpoint operators in the formula. While fairly recently a
quasi-polynomial algorithm was found by Calude et alii [5],
it is a long standing open question whether an algorithm
exists that is entirely polynomial in the size of the formula.

https://doi.org/10.1145/3531130.3533339
https://doi.org/10.1145/3531130.3533339

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

1.2 Graph representations of µ-calculus formulas
Generally, the algorithms that are used to solve problems
related to the modal µ-calculus do not take the formulas
themselves as input, but operate on some kind of representa-
tion of formulas. As we will briefly discuss now in various
contexts, this representation is usually based on a graph
structure that one may associate with a µ-calculus formula,
or can be viewed as such.

Parity Games The model checking problem for the µ-
calculus directly corresponds to the problem of determining
the winner of an (initialised) parity game. In fact, most work
on the complexity of the model checking problem is done in
this setting — this applies for instance to the just mentioned
quasi-polynomial complexity results. Parity games are infi-
nite two player games that are played over a graph, where
the vertices are the game positions and the edges are the
admissible moves relating these positions. When considering
the model checking problem of a formula ξ in a transition
system S as a parity game, the underlying graph of the game
is defined as some kind of product of a graph representation
of ξ with the graph of the transition system S. When study-
ing the model checking problem via its translation to parity
games one naturally thinks of formulas as graphs.

Automata Many of the key theoretical results about the
µ-calculus are proved by automata-theoretic methods. This
includes for example the aforementioned exponential time
satisfiability checking algorithm [9] by Emerson & Jutla,
but also the expressive completeness theorem by Janin &
Walukiewicz showing that the µ-calculus is the bisimula-
tion invariant fragment of monadic second order logic [13],
or the uniform interpolation result by D’Agostino & Hol-
lenberg [6]. Concretely, the automata that one mostly asso-
ciates with the modal µ-calculus are the µ-automata of Janin
& Walukiewicz [12] and the alternating tree automata of
Wilke [22]. Underlying the automata-theoretical approach is
a construction that turns a µ-calculus formula ξ into an au-
tomatonAξ which accepts precisely those pointed transition
systems where ξ is true. As argued in [16], it is in fact quite
natural to view the transition structure of an automaton as a
graph, and so one may indeed think of Aξ as a graph-based
representation of the formula ξ .

Equation Systems Formulas of the modal µ-calculus can
also be represented by systems of equations [2, 8, 19]. In fact,
as an alternative to the approach using parity games, the
model checking problem can be represented as a so-called
boolean equation system [17], which arises as some kind of
interweaving of an equation system representing the formula
with the model it is evaluated on. As with alternating tree
automata, it is not too difficult to see the equation systems
as being graph-based — here one may simply consider the
union of the subformula graphs of the formulas appearing
in one of the equations of the system.

Summarising, graph representations of formulas are of
central importance in the theory of the modal µ-calculus.
For concreteness, in this paper we will work with the parity
formulas of [16] as uniform, generic graph-based representa-
tions of µ-calculus formulas. We will recall the definition of
parity formulas in section 2.
Before we continue our discussion, let us note here that

there are at least three natural ways to associate a graph
with a µ-calculus formula ξ : its syntax tree, its subformula
dag, which is based on the collection Sfor(ξ) of subformu-
las of ξ , and its closure graph, which takes as its carrier its
(Fischer-Ladner) closure, the set Clos(ξ). Of these three, the
subformula dag and the closure graph feature most promi-
nently in algorithms and constructions.

1.3 The size of formula representations
Given the importance of graph representations of formulas
in the theory of the µ-calculus, it is somewhat surprising
that, while the literature is crystal clear on the algorithms
that operate on these representations, the relation between
a formula and its concrete representation is far less under-
stood.

Bruse, Friedmann& Lange [4], who studied the complexity
of a certain operation on µ-calculus formulas called guarded
transformation, displayed a sequence of formulas of which
the number of subformulas grows exponentially, whereas
the size of the closure of the formulas grows only quadrati-
cally. While the closure size of a formula was known to never
exceed the number of its subformulas [14], these size mea-
sures were generally assumed to be roughly the same. The
observation in [4] revealed that in fact, the closure graph of
a formula can be exponentially more succinct than its subfor-
mula dag. Consequently, for optimal complexity results on
the µ-calculus it is generally advisable to work with closure
graphs, and accordingly we will focus on this approach here.
Kupke, Marti & Venema [16] discussed the commonly

made assumption that µ-calculus formulas may assumed
to be clean.1 This assumption is generally considered to be
harmless, because formulas can be “cleaned up” by simply re-
naming bound variables. The authors, however, provided an
example where such a renaming incurs an exponential blow-
up of the size of its closure graph. This revealed that standard
constructions for the µ-calculus, on which algorithms for
model checking and satisfiability depend, are sensitive to the
specific choice of bound variables that are used in a formula.

The gaps in our knowledge that were pointed out in these
publications, cause problems in formulating and proving
optimal (or even correct) complexity results for the modal
µ-calculus. As a continuation of the work in [4] and [16], to
remedy these shortcomings, our aim here is to further clarify

1 A µ-calculus formula is clean (or well-named), if the sets of its free and
bound variables are disjoint, and with every bound variable one may asso-
ciate a unique subformula where this variable is bound.

Size measures and alphabetic equivalence in the µ-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

the impact of variable binding, and more specifically, alpha-
betic equivalence on the graph representations of formulas.

1.4 Variable binding and alphabetic equivalence
A key feature of the syntax of the modal µ-calculus is that
it involves variable binding. Every fixpoint operator binds
the recursion variable in the subformula it governs. As a
consequence, when working with formulas of the µ-calculus
directly, one has to keep track of bound and free variables,
which involves some nontrivial bookkeeping. Perhaps the
appeal of game and automata theoretic approaches to the
theory of the µ-calculus can be partially explained by the fact
that graph representations provide an elegant variable-free
alternative to standard formulas.

Here wewill focus on the role of alphabetic equivalence, or
briefly: α-equivalence, in the construction of graph represen-
tations of formulas. Roughly, two formulas are α -equivalent
if they can be obtained from one another by suitable renam-
ings of bound variables – a precise definition will be given
further on. Generally, logicians tend to identify α-equivalent
formulas, or at the very least, they consider the differences
between α-equivalent formulas to be irrelevant. We certainly
do not want to argue against this principle; on the contrary,
our point is that it should be adhered to more consistently.
In fact, to the best of our knowledge, there is no construction
of a graph representation of a µ-calculus formula in which
the principle has been taken into full account.

In particular, none of the currently available constructions
that represent a formula ξ on the basis of its closure graph
identify α-equivalent formulas in the set Clos(ξ), and the
same observation applies to the algorithms that work with
the subformula dag. This is particularly odd since, as dis-
cussed above, such constructions generally feature a (usually
implicit) preprocessing step that replaces the input formula
with a clean alphabetic variant. In other words: these con-
structions do follow the principle of α-invariance on the side
of the input, but fail to take it into account on the output
side.
As discussed already, Kupke, Marti & Venema [16] were

the first to point out the effects of renaming bound variables
on the size of graph representations. Their main contribution
is a construction that associates with an arbitrary (i.e., not
necessarily clean) µ-calculus formula ξ a graph representa-
tion that is succinct in being based on the closure graph of
ξ , while at the same time preserving the alternation depth
of ξ . This construction, however, has the disadvantage that
two distinct but α-equivalent formulas may receive different
representations, possibly of exponentially differing sizes.

1.5 A succinct α-invariant representation
Our concrete goal here is to come up with a graph represen-
tation of µ-calculus formulas that is α -invariant in the sense
that α-equivalent formulas obtain the same representation,

and α-invariant formulas are identified throughout the con-
struction. In contrast to the construction via clean alphabetic
variants, which may result in an unnecessary exponential
size blow-up, our construction will be much more succinct.
To formulate this more precisely we need some techni-

cal detail. Assume that, on the basis of the observations of
Bruse et alii [4], in order to find an optimally succinct graph
representation of a µ-calculus formula ξ , we take its Fischer-
Ladner closure Clos(ξ) as a starting point. Our aim will be to
use the principle of α-invariance to improve on the construc-
tion by Kupke et alii [16], which would suggest to consider
the α-equivalence classes of Clos(ξ). Our first and promis-
ing observation is that while the respective closure sets of
α-equivalent formulas need not have the same number of
elements they do have the same number of α-cells:

ξ0 =α ξ1 implies |Clos(ξ0)/=α | = |Clos(ξ1)/=α |. (1)

Here and in the sequel we will write =α to denote α-equi-
valence, and refer to the equivalence classes of this relation as
α -cells. This raises the question whether perhaps we can base
a graph representation of a formula ξ on the set Clos(ξ)/=α
consisting of the =α -cells in its closure, or perhaps on a
related set of the same size.

The second and main contribution of this work is that we
answer this question affirmatively.

Theorem 1.1. There is a construction transforming an arbi-
trary µ-calculus formula ξ into an equivalent parity formula
Pξ such that

1) |Pξ | = |Clos(ξ)/=α |;
2) the index of Pξ is bounded by the alternation depth of ξ ;
3) ξ0 =α ξ1 implies Pξ0 = Pξ1 .

Consequently, this approach induces the following size
measure for µ-calculus formulas:

|ξ | := |Clos(ξ)/=α |.

This size measure is fully α-invariant in the sense that α-
equivalent formulas obtain the same size, and in computing
this size, α-equivalent formulas are only counted once. It is
also optimal in the sense that it is the sharpest size measure
(among the ones known from the literature) which can be
used to correctly formulate the aforementioned complexity
results for model checking and satisfiability.
The key idea underlying our proof of Theorem 1.1 is to

use the observation (1) to our advantage.2 That is, we will
define an operation ·̂ : µML → µML that is a renaming in the
sense that

ξ =α ξ̂ (2)
for all ξ , and ·̂ picks a fixed member of the α-cell of its input
formula:

ξ0 =α ξ1 implies ξ̂0 = ξ̂1. (3)
2An alternative approach would be to use a different way to represent
α -cells, for instance using de Bruijn indices. We will say more on this in
Section 5.

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

The key feature of this renaming operation is that

α-equivalence is the identity relation on Clos(ξ̂), (4)

from which we immediately conclude that |Clos(ξ̂)/=α | =
|Clos(ξ̂)|. Observe then that it follows from (1), (2) and (4)
that

|Clos(ξ)/=α | = |Clos(ξ̂)|.
In other words, ·̂ is a renaming operation that picks, for
any µ-calculus formula ξ , a formula of minimal closure size
among the alphabetic variants of ξ . Furthermore, we may
think of the formulas in the closure of ξ̂ as representing the
=α -cells in Clos(ξ).
Given the semantic equivalence of the formulas ξ and

ξ̂ , this indicates that we may obtain a truly succinct graph
representation of µ-calculus formulas as follows. We already
mentioned that themain contribution of Kupke et alii [16] is a
construction that associates with every µ-calculus formulaψ
a succinct parity formula Gψ that is based on the set Clos(ψ)
and has an index bounded by the alternation depth of ψ .
We may now improve on this by taking, as an even more
succinct graph representation of a µ-calculus formula ξ , the
parity formula we obtain from applying the construction
of [16] to the renaming ξ̂ of ξ :

Pξ := Gξ̂ .

It is then easy to see that this definition meets the require-
ments of Theorem 1.1.

Related version Some of the more technical proofs can be
found in the technical report [?].

2 Preliminaries
In this section we recall the syntax and semantics of the
modal µ-calculus; for more information we refer to [2, 3, 8,
11]. We also briefly discuss the graph representation of its
formulas as parity formulas.

2.1 Syntax of the µ-calculus
We will assume that µ-calculus formulas are in negation
normal form; that is, the language µML of (modal) µ-calculus
formulas is given by the following grammar:

µML ∋ φ ::= p | p | ⊥ | ⊤ | (φ ∨ φ) | (φ ∧ φ)

| 3φ | 2φ | µx φ | νx φ,

where p,x are variables, and the formation of the formulas
µx φ and νx φ is subject to the constraint that φ is positive in
x , i.e., there are no occurrences of x in φ. Elements of µML
will be called µ-calculus formulas or standard formulas. We
define Lit(Q) := {p,p | p ∈ Q} as the set of literals over Q ,
and At(Q) := {⊥,⊤} ∪ Lit(Q) as the set of atomic formulas
over Q . Formulas of the form µx .φ or νx .φ will be called
fixpoint formulas. We will associate µ and ν with the odd and
even numbers, respectively, and use η, λ as metavariables for

these two fixpoint binders. For η ∈ {µ,ν } define η by putting
µ := ν and ν := µ. The notion of subformula is defined as
usual; we write φ P ψ if φ is a subformula ofψ , and define
Sfor(ψ) as the set of subformulas ofψ .
We use standard terminology related to the binding of

variables. We write BV (ξ) and FV (ξ) for, respectively, the set
of bound and free variables of a formula ξ . We fix a set Q of
proposition letters and let µML(Q) denote the set of formulas
ξ with FV (ξ) ⊆ Q .

We let φ[ψ/x] denote the formula φ, with every free occur-
rence of x replaced by the formulaψ ; for the time being3 we
only apply this substitution operation ifψ is free for x in φ,
meaning that no free variable ofψ gets bound after substitut-
ing. Formally we say thatψ is free for x in ξ if ξ is positive in
x and for every variable y ∈ FV (ψ), every occurrence of x in
a subformula ηy.χ of ξ is in the scope of a fixpoint operator
λx in ξ , i.e., bound in ξ by some occurrence of λx . With this
constraint, we inductively define the substitution [ψ/z] as
the following partial operation on µML:

x[ψ/z] :=
{
ψ if x = z
x if x , z

(♥φ)[ψ/z] := ♥φ[ψ/z]

(φ0 ⊙ φ1)[ψ/z] := φ0[ψ/z] ⊙ φ1[ψ/z]

(ηx .φ)[ψ/z] :=
{
ηx .φ if x = z
ηx .φ[ψ/z] otherwise,

where ♥ ∈ {3,2}, ⊙ ∈ {∨,∧} and η ∈ {µ,ν }.
The unfolding of a formulaηx .χ is the formula unf(ηx χ) :=

χ [ηx .χ/x]. Given our constraint on the substitution opera-
tion, the unfolding of a formula ξ is only properly defined
if ξ is tidy,4 that is, if FV (ξ) ∩ BV (ξ) = �. The (Fischer-
Ladner) closure of a tidy formula ξ ∈ µML is the smallest
set containing ξ which is closed under taking boolean and
modal subformulas, and under taking unfoldings of fixpoint
formulas. We will need some detail.
For every tidy formula ξ ∈ µML define the set Clos0(ξ)

with the following case distinction:

Clos0(φ) := � (φ ∈ At(Q))

Clos0(φ0 ⊙ φ1) := {φ0,φ1} (⊙ ∈ {∧,∨})
Clos0(♥φ) := {φ} (♥ ∈ {3,2})

Clos0(ηx .φ) := {φ[ηx .φ/x]} (η ∈ {µ,ν }).

We write ξ →C φ if φ ∈ Clos0(ξ) and refer to →C as the
trace relation on µML. We define the relation↠C as the re-
flexive and transitive closure of →C , and define Clos(ξ) :=
{φ | ξ ↠C φ}; formulas in this set are said to be derived
from ξ . Given a set of tidy formulas Ψ, we put Clos(Ψ) :=
3This constraint saves us from involving alphabetic variants when substi-
tuting. After we have introduced α -equivalence, we can lift this constraint,
extending substitution to a total operation in Definition 3.9.
4In the literature, some authors make a distinction between proposition
letters (which can only occur freely in a formula), and propositional vari-
ables, which can be bound. Our tidy formulas correspond to sentences in
this approach, that is, formulas without free variables.

Size measures and alphabetic equivalence in the µ-calculus LICS ’22, August 2–5, 2022, Haifa, Israel⋃
ψ ∈Ψ Clos(ψ). We call the set Clos(ξ) the closure of ξ . The

closure graph of ξ is the directed graph (Clos(ξ),ECξ), where
ECξ is the trace relation→C , restricted to the set Clos(ξ). Fi-
nally, we call a→C -pathψ0 →C ψ1 →C · · · →C ψn a (finite)
trace . We can use induction on the length of traces originat-
ing at ξ to prove statements about formulas in Clos(ξ). It is
easy to show that all formulas in Clos(ξ) are tidy.
The size of a formula can be measured in at least three

different ways: First, there is the length |ξ |ℓ of the formula
ξ ∈ µML which is defined in the obvious way as the length
of the string (or tree) representation of ξ . Alternatively, the
subformula size of a (clean) formula ξ is defined as the num-
ber of its subformulas: |ξ |s := |Sfor(ξ)|; and the closure size
of a (tidy) formula ξ is simply given as the size of its closure:

|ξ |c := |Clos(ξ)|.

Next to its size, the most important complexity measure
of a µ-calculus formula is its alternation depth. There are
various ways to make this notion precise; here we shall work
with the most widely used definition from Niwiński [18].
By natural induction we define classes Θµ

n ,Θ
ν
n of µ-calculus

formulas. With η, λ ∈ {µ,ν } arbitrary, we set:
1. all atomic formulas belong to Θ

η
0 ;

2. if φ0,φ1 ∈ Θ
η
n , then φ0 ∨ φ1,φ0 ∧ φ1,3φ0,2φ0 ∈ Θ

η
n ;

3. if φ ∈ Θ
η
n then ηx .φ ∈ Θ

η
n ;

4. if φ(x),ψ ∈ Θ
η
n , then φ[ψ/x] ∈ Θ

η
n , provided thatψ is

free for x in φ;
5. all formulas in Θλ

n belong to Θ
η
n+1.

The alternation depth ad(ξ) of a formula ξ is defined as the
least n such that ξ ∈ Θ

µ
n ∩ Θνn .

Intuitively, the class Θηn consists of those µ-calculus for-
mulas where n bounds the length of any alternating nesting
of fixpoint operators of which the most significant formula
is an η-formula. The alternation depth is then the maximal
length of an alternating nesting of fixpoint operators.

As an example, consider the formula

ξ = µx .νy.(2y ∧ µz.(3x ∨ z)),

which looks like a µ/ν/µ-formula in the sense that it contains
a nested fixpoint chain µx/νy/µz. However, the variable y
does not occur in the subformula µz.(3x ∨z), and so we may
in fact consider ξ as a µ/ν-formula. Formally, we observe
that µz.3x ∨ z ∈ Θν0 ⊆ Θν1 and νy.2y ∧ p ∈ Θ

µ
0 ⊆ Θν1 ;

from this it follows by the substitution rule that the formula
νy.(2y ∧ µz.(3x ∨ z)) belongs to the set Θν1 as well; from
this we easily conclude that ξ ∈ Θν1 . It is not hard to show
that ξ < Θµ

1 , but since ξ ∈ Θ
µ
2 ∩ Θν2 we find ad(ξ) = 2.

2.2 Compositional semantics of the µ-calculus
The modal µ-calculus is interpreted over Kripke structures.
A Kripke structure or transition system over a set Q of propo-
sition letters is a triple S = (S,R,V) where S is a set of states,
R ⊆ S × S is a binary relation, and V : Q → P(S) is called a

Q-valuation on S . A pointed Kripke structure is a pair (S, s)
where s ∈ S is a designated state. Given a Kripke struc-
ture S = (S,R,V), a variable x and a set A ⊆ S , we define
V [x 7→ A] as the Q ∪ {x}-valuation given by

V [x 7→ A](p) :=
{
A if p = x ,
V (p) if p , x

and we let S[x 7→ A] denote the structure (S,R,V [x 7→ A]).
The semantics of the µ-calculus is defined as follows. By

induction on the complexity of µ-calculus formulas, we de-
fine a meaning function [[·]], which assigns to a formula
φ ∈ µML(Q) its meaning [[φ]]S ⊆ S in any Kripke model
S = (S,R,V) over Q .

[[p]]S := V (p) [[p]]S := S \V (p) [[⊥]]S := � [[⊤]]S := S

[[φ ∨ψ]]S := [[φ]]S ∪ [[ψ]]S [[φ ∧ψ]]S := [[φ]]S ∩ [[ψ]]S

[[3φ]]S := {s ∈ S | R[s] ∩ [[φ]]S , �}

[[2φ]]S := {s ∈ S | R[s] ⊆ [[φ]]S}

[[µx .φ]]S :=
⋂

{A ∈ P(S) | [[φ]]S[x 7→A] ⊆ A}

[[νx .φ]]S :=
⋃

{A ∈ P(S) | [[φ]]S[x 7→A] ⊇ A}.

If a state s ∈ S belongs to the set [[φ]]S, we write S, s ⊩ φ, and
say that s satisfies φ. Two formulas φ andψ are equivalent,
notation: φ ≡ ψ , if [[φ]]S = [[ψ]]S for any structure S.

2.3 Parity formulas
In this paper we take the parity formulas of [16] as a uniform,
graph-based representation of µ-calculus formulas. General-
ising the usual tree-based representation of formulas, parity
formulas are defined as arbitrary graphs where the vertices
are labeled with logical connectives. Additionally, parity for-
mulas come with a priority map to ensure that despite their
cyclic nature they have a well-defined semantics in terms of
parity games.

Definition 2.1. A parity formula over Q is a quintuple G =
(V ,E,L,Ω,vI), where

• (V ,E) is a finite, directed graph;
• L : V → At(Q) ∪ {∧,∨,3,2, ϵ} is a labelling function;
• Ω : V

◦
→ ω is a partial map, the priority map of G; and

• vI is a vertex in V , referred to as the initial node of G;
such that (with E[v] := {u ∈ V | Evu}):

1. |E[v]| ≤ 2 for every vertexv ; |E[v]| = 0 if L(v) ∈ At(Q),
and |E[v]| = 1 if L(v) ∈ {3,2} ∪ {ϵ};

2. every cycle of (V ,E) contains at least one node inDom(Ω).
The elements of Dom(Ω) are called states.

The semantics of parity formulas is defined in terms of
the following parity game.

Definition 2.2. Let S = (S,R,U) be a model, and let G =
(V ,E,L,Ω,vI) be a parity formula.We define themodel check-
ing game E(G,S) as the parity game of which the board (or

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

Position Player Moves
(v, s) with L(v) = p and s ∈ U (p) ∀ �

(v, s) with L(v) = p and s < U (p) ∃ �

(v, s) with L(v) = p and s ∈ U (p) ∃ �

(v, s) with L(v) = p and s < U (p) ∀ �

(v, s) with L(v) = ϵ - E[v] × {s}
(v, s) with L(v) = ∨ ∃ E[v] × {s}
(v, s) with L(v) = ∧ ∀ E[v] × {s}
(v, s) with L(v) = 3 ∃ E[v] × R[s]
(v, s) with L(v) = 2 ∀ E[v] × R[s]

Table 1. The model checking game E(G,S) of Definition 2.2.

arena) consists of the setV ×S , the priority map Ω′ : V ×S → ω
is given by putting Ω′(v, s) := Ω(v) if v ∈ Dom(Ω) and
Ω′(v, s) := 0 otherwise, and the game graph is given in Ta-
ble 1. G holds at or is satisfied by the pointed model (S, s),
notation: S, s ⊩ G, if the pair (vI , s) is a winning position for
∃ in E(G,S).

Parity formulas can be seen as variations of Wilke’s al-
ternating tree automata [11, 22], but they are also closely
related to hierarchical equation systems [2, 8, 19], and µ-
calculus in vectorial form [2]. For a detailed discussion of
these connections we refer to [16].
The main reason to prefer parity formulas5 over these

other representations is that, given the straightforward defi-
nition of their semantics in terms of parity games, they allow
for a clear and completely perspicuous definition of their
most relevant complexity measures: size and index. The size
of a parity formula is simply the number of its vertices and
its index corresponds to the maximal length of a suitably
defined alternating chain in the range of its priority map.

For this reason, parity formulas serve as an ideal yardstick
for comparing various complexity measures of standard for-
mulas. In particular, we can use parity formulas to define the
notion of a size measure for µ-calculus formulas. Say that a
parity formulaG represents6 a formula ξ ∈ µML ifG and ξ are
equivalent (in the obvious way of being satisfied by the same
pointed models). Then we call an attribute s : µML → ω a size
measure of µ-calculus formulas if (†) it is induced by some
representation ξ 7→ Gξ in the sense that s(ξ) = |Gξ |. For
instance, the following fact from [16] indicates that closure
size is a size measure indeed.

Fact 2.3. [16] There is an effective way to represent any tidy
formula ξ by a parity formula Gξ = (Clos(ξ),ECξ ,Ωξ , ξ), of
which the index is bounded by the alternation depth of ξ .

5Nothing in our paper hinges on this choice, all results can be formulated
in terms of alternating tree automata or hierarchical equation systems as
well.
6This notion of representation is quite weak. In practice we shall focus
on constructions that preserve quite a bit of the syntactic structure of the
standard formula, but we do not need to adapt the definition accordingly.

3 Alphabetic equivalence
In formalisms that feature some kind of variable binding, the
meaning of a syntactic expression usually does not depend
on the exact choice of its bound variables. In such a setting
α-equivalent formulas, i.e., formulas that can be obtained
from one another by a suitable renaming of bound variables,
are often taken to be identical. In this section we formally
introduce the notion of alphabetical equivalence, and we
prove some of its basic properties. We discuss its impact of
α-equivalence on the notion of closure, and quickly use it to
extend the operation of substitution to a total operation.

Definitions
Let us start with giving a proper definition of the notion of
alphabetic equivalence.

Definition 3.1. An equivalence relation ∼ on the set µML of
formulas will be called a (syntactic) congruence if it satisfies
the following two conditions:
1) if φ0 ∼ ψ0 and φ1 ∼ ψ1 then φ0 ⊙ φ1 ∼ ψ0 ⊙ ψ1, for

⊙ ∈ {∨,∧};
2) if φ ∼ ψ then ♥φ ∼ ♥ψ , for ♥ ∈ {3,2}.

We define the relation =α as the smallest congruence ∼ on µML
which is closed under the rule:
3) if φ0[z/x0] ∼ φ1[z/x1], where z is fresh for φ0 and φ1,

then ηx0.φ0 ∼ ηx1.φ1, for η ∈ {µ,ν }.
The α -equivalence class or α-cell of a formula φ is denoted as
LφM. If φ =α ψ we call φ and ψ α-equivalent, or alphabetic
variants of one another. A renaming is a map assigning an
alphabetic variant to every formula.

The following definition will play a prominent role.

Definition 3.2. Call a set Φ of µ-calculus formulas lean if
the relations of α-equivalence and syntactic identity coincide
on Φ.

It will be convenient to have a formal system in place
by which we can derive the α-equivalence of two formulas
— this will enable us to prove statements about =α using
induction on the complexity of such derivations.

Definition 3.3. With .
= denoting a formal identity symbol, an

equation is an expression of the form φ
.
= ψ with φ,ψ ∈ µML.

We define ⊢α as the derivation system on such equations, which
consists of the axiomφ

.
= φ and the obvious rules corresponding

to the conditions 1) – 3) above. In case an equation φ .
= ψ is

derivable in this system we write ⊢α φ
.
= ψ .

Note that the absence of rules for symmetry or transitivity
in ⊢α makes the system a very useful proof tool. This absence
is justified by the following proposition.

Proposition 3.4. The derivation system ⊢α for =α is sound
and complete for α-equivalence, that is, for any pair of µML-
formulas φ,ψ we have

φ =α ψ iff ⊢α φ
.
= ψ .

Size measures and alphabetic equivalence in the µ-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

Proof. Soundness, i.e., the implication from right to left, is ob-
vious. For the opposite implication, one shows by induction
on φ that ⊢α φ

.
= ψ and ⊢α ψ

.
= ξ imply ⊢α φ

.
= ξ , which ob-

viously implies that the relation generated by ⊢α -deductions
is transitive. Similarly, one can show that the relation of ⊢α -
derivable equivalence is symmetric. From this it is immediate
that φ =α ψ implies ⊢α φ

.
= ψ as required. □

In the sequel we will use the above proposition without
warning; we will also be somewhat sloppy concerning no-
tation and terminology, for instance allowing ourselves to
write that ‘φ =α ψ is derivable’ if we mean that ⊢α φ

.
= ψ .

Basic observations
We first provide some key information about α-equivalence.
The first proposition states that many basic concepts of µ-
calculus formulas are invariant under α-equivalence (here
fd(φ) denotes the fixpoint depth of φ).

Proposition 3.5. The following hold, for any pair φ0,φ1 of
µ-calculus formulas:

1. if φ0 =α φ1 then φ0 ≡ φ1;
2. if φ0 =α φ1 then |φ0 |

ℓ = |φ1 |
ℓ ;

3. if φ0 =α φ1 then FV (φ0) = FV (φ1);
4. if φ0 =α φ1 then fd(φ0) = fd(φ1);
5. if φ0 =α φ1 then ad(φ0) = ad(φ1).

Below we gather some technical observations, which are
used in the proof of Proposition 3.5 and in many of the proofs
in the next section. Some of these observation are of some
interest in their own right, such as item (10) stating that =α
is a congruence with respect to the unfolding operation.

Proposition 3.6. Let φ,φ0,φ1,ψ ,ψ0,ψ1 and χ be µ-calculus
formulas, and let η,η0,η1 ∈ {µ,ν }. Then the following hold:

1) if φ =α ψ then φ[z/x] =α ψ [z/x] for any z that is fresh
for φ andψ ;

2) if η0x0.φ0 =α ψ1 then ψ1 is of the form ψ1 = η1y.φ1,
where η0 = η1;

3) if ηx0.φ0 =α ηx1.φ1 then φ0[z/x0] =α φ1[z/x1], for any
fresh variable z;

4) if ηx .φ0 =α ηx .φ1 then φ0 =α φ1;
5) if ηx .φ0 ⊙ φ1 =α ηy.ψ0 ⊙ ψ1 then ηx .φi =α ηy.ψi , for

i ∈ {0, 1} and ⊙ ∈ {∧,∨};
6) if ηx .♥φ =α ηy.♥ψ then ηx .φ =α ηy.ψ for ♥ ∈ {3,2};
7) if ηx .λz.φ =α ηy.λz.ψ then ηx .φ =α ηy.ψ for λ ∈

{µ,ν };
8) if φ =α ψ , y < FV (φ) and y is free for x in ψ , then
ηx .φ =α ηy.ψ [y/x];

9) if φ0 =α φ1, ψ0 =α ψ1 and ψi is free for x in φi , then
φ0[ψ0/x] =α φ1[ψ1/x];

10) if ηx0.φ0 =α ηx1.φ1 for tidy formulas ηxi .φi
then φ0[ηx0.φ0/x0] =α φ1[ηx1φ1/x1];

11) if φ0 =α φ1 then ηx .φ0 =α ηx .φ1.

12) if φ =α ψ [χ/x], then φ = ψ ′[χ ′/x ′] for some formulas
ψ ′, χ ′ and a fresh variable x ′ such thatψ =α ψ ′[x/x ′]

and χ =α χ ′.

The proof of these propositions can be found in the tech-
nical report [?].

Alphabetic equivalence and size measures
Although α-equivalent formulas have the same length, their
(closure or subformula) sizes may differ exponentially. The
following observation by Kupke,Marti &Venema [16], which
was mentioned in the introduction, states that the commonly
made assumption that in the µ-calculus one may without loss
of generality work with clean formulas, is not as innocent as
it may seem when it comes to size considerations.

Proposition 3.7. There is a family (ξn)n∈ω of tidy formulas
such that |ξn |c ≤ 2 ·n, while for any sequence of clean formulas
χn such that ξn =α χn for all n, we have |χn |c ≥ 2n .

Proposition 3.7 also indicates that closure size is not such
an appealing size measure since it is not α-invariant: α-
equivalent but distinct formulas may have distinct sizes. In
fact, closure size fails to be α-invariant for another reason
as well: the closure of a formula may contain α-equivalent
but distinct formulas.
In case one wants to define a succinct α-invariant size

measure, the following proposition (which was discussed as
statement (1) in the introduction) is a promising first step.

Proposition 3.8. Let ξ0 and ξ1 be tidy µ-calculus formulas
such that ξ0 =α ξ1. Then

1) for every φ0 ∈ Clos(ξ0) there is a φ1 ∈ Clos(ξ1) such that
φ0 =α φ1, and vice versa;

2) as a corollary, |Clos(ξ0)/=α | = |Clos(ξ1)/=α |.

Proof. We prove part 1) of this proposition by induction on
the length of the shortest trace from ξ0 to φ0. In the base case
we have φ0 = ξ0, so that we may take φ1 := ξ1.

In the inductive casewe assume some formulaψ0 ∈ Clos(ξ0)
which can be reached by a shorter trace from ξ0 and is such
that φ0 is either (1/2) a direct modal or boolean subformula
ofψ0 or else (3)ψ0 is a fixpoint formula ηx0.χ0 of which φ0
is the unfolding. An instance of the first case is whereψ0 is
of the form 3φ0. By the induction hypothesis this formula
has an alphabetic variant ψ1 in the closure set of ξ1; it is
then easy to see thatψ1 must be of the form 3φ1 for some
formula φ1. But then it is immediate that φ1 ∈ Clos(ξ1) and
that φ1 =α φ0, as required. The case where φ0 is a boolean
subformula of ψ0 is dealt with in a similar way, and in the
third case we use Proposition 3.6(10)).

For part 2) of the proposition, observe that as an immediate
consequence of part 1), we find a bijection between the sets
of Clos(ξ0)/=α and Clos(ξ1)/=α . □

Part 2) of the Proposition states that up to α-equivalence,
the closure sets of α-equivalent formulas have the same

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

size, as announced in the introduction. A natural suggestion
would then be to take the number of α-cells of its closure as
the size of a formula; this would certainly provide a fully α-
invariant notion of size. Note however, that Proposition 3.8
on its own is not enough to consider the proposed definition
as a proper size measure. The problem is that it is not a
priori clear that the definition meets our requirement (†)
that any reasonable size measure should be based on some
transformation of a µ-calculus formula into an equivalent
parity formula. As we will see in the next section, this is
where Theorem 1.1 comes in.

Substitution revisited
As promised in section 2, we will now provide a proper
definition of the substitution operation [ψ/x], i.e., one that
is also applicable to formulas φ in whichψ is not free for x ,
in a way that avoids variable capture. Our approach here is
completely standard.

Definition 3.9. Given two µ-calculus formulas φ andψ , we
define

φ[ψ/x] :=
{
φ[ψ/x] ifψ is free for x in φ
renψ (φ)[ψ/x] otherwise.

where we let renψ (φ) be a canonically chosen alphabetic vari-
ant of φ such thatψ is free for x in renψ (φ).

4 α-Invariance via skeletal renaming
The aim of this section is to provide a renaming function
which maps an arbitrary µ-calculus formula ξ to an alpha-
betic variant ξ̂ satisfying the conditions (3) stating that the
map ·̂ picks a fixed element of every α-cell, and (4) requiring
that for every formula ξ ∈ µML, the closure of its renaming ξ̂
is lean (i.e., α-equivalence is the identity relation on Clos(ξ̂)).
As we saw in the introduction, this suffices to prove the main
theorem of the paper.
The key concept involved in the definition of ξ̂ will be

that of a skeletal (set of) formula(s), to be introduced in
Definition 4.3 below, and the key property that we shall
need of skeletal formulas is that they have a lean closure, as
stated in Proposition 4.11. We then proceed to defining the
skeletal renaming ·̂ , of which we subsequently prove that it
is, indeed, a renaming, and satisfies the conditions (3) and
(4). We finish the section by providing, in Definition 4.20, a
new and fully α-invariant size measure, and we show that it
has some desirable properties, for instance in relation to the
substitution operation.

Skeletal formulas
Throughout this section we fix a placeholder variable s ,
which we assume to be ‘fresh’ in the sense that it does not
occur in any formula in µML.7

7To do this in a precise way we could introduce the set µMLs of formulas
that are allowed to contain the placeholder s as a special variable.

Definition 4.1. Given a set U of variables, we define the
skeleton skU (φ) of a formula φ relative to a set of variablesU
by induction on the structure of φ. Throughout this induction
we will define

skU (φ) := s ifU ∩ FV (φ) = �,

so that in the inductive definition itself we may focus on the
case whereU ∩ FV (φ) , �:

skU (x) := x for x ∈ U
skU (φ0 ⊙ φ1) := skU (φ0) ⊙ skU (φ1) (⊙ ∈ {∨,∧})
skU (♥φ) := ♥skU (φ) (♥ ∈ {3,2})

skU (ηz.φ) := ηz.skU∪{z }(φ) (η ∈ {µ,ν })

For a single variable x we write skx as abbreviation for sk{x } .

The intuition behind this map is that we replace ‘U -free’
subformulas, that is, subformulas not taking any free variable
from the set U , with the place holder s , and that this set U
of critical variables grows by collecting bound variables as
we move down (i.e., away from the root) in the syntax tree
of the formula. A couple of examples are in order.

Example 4.2. 1) Let φ = p ∨3x , then skx (φ) = s ∨3x .
2) Let φ = ((p ∨ µz.(q ∧2z)) ∧ µy.((q ∨3y) ∨2x)), then
skx (φ) = s ∧ µy.((s ∨3y) ∨2x).

Definition 4.3. We call a set of formulas Φ skeletal if for
any pair of formulas φ0 = η0x0.ψ0 and φ1 = η1x1.ψ1 in⋃
φ ∈Φ Sfor(φ) we have

x0 = x1 iff η0x0.skx0 (ψ0) =α η1x1.skx1 (ψ1). (5)

We will call a single formula ξ skeletal if the singleton {ξ } is
skeletal.

Intuitively, the formula ηx .skx (φ) is obtained by leaving
every part of ηx .φ that has some bearing on choosing a suit-
able alternative name for the bound variable x unchanged,
but replacing every other part with the placeholder s . In more
technical terms, the function sk ensures that all elements of
Clos(ηx .skx (φ)) are either equal to s or contain ηx .skx (φ) as
a subformula.

Example 4.4. Consider the formulas α = µx .νy.3x ∧ 2y,
and β = νy ′.3α ∧2y ′. Clearly β is an alphabetic variant of
the unfolding unf(α) = νy.3α ∧2y of α .

The formula α is obviously skeletal. It is not hard to see that
unf(α) is skeletal as well, since the skeletons of both the outer
and the inner ν -formula are equal to νy.s ∧2y. We leave it as
an exercise for the reader to verify that the set Clos(α) is lean.
Now consider the formula β ∨ α . Its subformulas β and α

bear witness to the fact that β ∨ α is not skeletal. In line with
this, the closure of β ∨ α contains both the formula β and its
alphabetic variant unf(α), and thus it will not be lean.
Our skeletal renaming of β ∨ α , on the other hand, will

ensure that the variables y and y ′ are renamed into a single
variable z, as both relevant ν-subformulas of β ∨ α have a
skeleton of the form νy.s ∧2y.

Size measures and alphabetic equivalence in the µ-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

Basic observations
We will now see in detail that skeletal formulas have indeed
the desired properties. We start with some basic observations
about the skeletal function. The proof of the first Proposition
is straightforward — we omit the details.

Proposition 4.5. Let φ be a formula and let x < FV (φ). Then

skU∪{x }(φ) = skU (φ).

Proposition 4.6. Let ψ be a formula, let U be a set of vari-
ables and let x be a variable with x < U . Furthermore let β be a
formula which is free for x inψ , and such thatU ∩ FV (β) = �.
Then

skU (ψ) = skU (ψ [β/x]). (6)

In particular, if x and y are variables such that x ,y < U and y
is free for x inψ , then skU (ψ) = skU (ψ [y/x])

Proof. Consider first the case where U ∩ FV (ψ) = �. We
have FV (ψ [β/x]) ⊆ FV (ψ) ∪ FV (β), which, together with
our assumption on FV (β), implies U ∩ (FV (ψ [β/x])) = �.
Therefore we obtain skU (ψ) = s = skU (ψ [β/x]) as required.

In the case that U ∩ FV (ψ) , � the claim is proved by
induction onψ . In the base step of the induction, we make
a case distinction. If ψ , x then ψ = ψ [β/x] so that (6)
follows immediately. If, on the other hand, we haveψ = x ,
then skU (x) = s = skU (β) = skU (x[β/x]), where the second
equality holds asU ∩ FV (β) = �.
The boolean and modal cases are easy. For instance, in

the case of a Boolean operator, we have ψ = ψ0 ⊙ ψ1, with
⊙ ∈ {∧,∨}. By our assumption that U ∩ FV (ψ) , �, there
is an i withU ∩ FV (ψi) , �. Now for j ∈ {0, 1} we may use
the induction hypothesis in the case that U ∩ FV (ψj) , �,
and the fact that the lemma is already proved for the case
thatU ∩ FV (φi) = �. Using these facts, we find

skU (ψ0 ⊙ψ1)

= skU (ψ0) ⊙ skU (ψ1) (U ∩ FV (ψ) , �)
= skU (ψ0[β/x]) ⊙ skU (ψ1[β/x]) (explained above)
= skU (ψ0[β/x] ⊙ψ1[β/x]) (U ∩ FV (ψ [β/x]) , �)
= skU

(
(ψ0 ⊙ψ1)[β/x]) (definition substitution)

Finally, in the case that ψ = ηz.φ, we recall that U ∩

FV (ηz.φ) , �, and calculate

skU (ηz.φ) = ηz.skU∪{z }(φ)

= ηz.skU∪{z }(φ[β/x]) (IH)
= skU (ηz.φ[β/x]) (*)

Observe that the induction hypothesis is applicable, since by
assumption β is free for x inψ , which implies that z < FV (β).
The final equality (*) uses the fact that � , U ∩ FV (ηz.φ) ⊆
U ∩ FV (ηz.φ[β/x]), which holds since by assumption x <
U . □

Proposition 4.7. Let φ be a formula, let U be a set of vari-
ables, and let x and z be variables such that x ∈ U , z <
U ∪ FV (φ) and z is free for x in φ. Then

skU (φ)[z/x] = skU [z/x](φ[z/x])

whereU [z/x] := (U \ {x}) ∪ {z}.

Proof. In the case thatx < FV (φ)we also havex < FV (skU (φ))
and thus (skU (φ))[z/x] = skU (φ). In addition,

skU [z/x](φ[z/x]) = skU [z/x](φ) = skU (φ)

where the last equality follows from Proposition 4.5 as z and
x do not occur freely in φ.

If, on the other hand, we have that x ∈ FV (φ)we prove the
claim by induction on φ. In the base case of this induction,
whereφ = x , the claim is an easy calculation: (skU (x)[z/x] =
z = skU [z/x](x[z/x]).

If φ = φ1 ⊙ φ2 with ⊙ ∈ {∨,∧}, we have

skU (φ1 ⊙ φ2)[z/x] = skU (φ1)[z/x] ⊙ skU (φ2)[z/x]
(∗)
= skU [z/x](φ1[z/x]) ⊙ skU [z/x](φ2[z/x])

= skU [z/x]((φ1 ⊙ φ2)[z/x])

where (*) is either by the induction hypothesis, or by the
previous case if x does not occur in φ.
The case where φ = ♥ψ for ♥ ∈ {2,3} is similar to the

previous one.
Finally, we consider the case where φ = ηy.ψ . By our

assumptions we have y , x since x ∈ FV (φ) and — as z is
free for x in φ — we also have z , y. We calculate:

skU (ηy.ψ)[z/x] =
(
ηy.skU∪{y }(ψ)

)
[z/x] (Def. sk)

= ηy.
(
skU∪{y }(ψ)[z/x]

)
(IH)

= ηy.
(
sk(U∪{y })[z/x](ψ [z/x])

)
(Def. sk)

= skU [z/x](ηy.ψ [z/x]).

□

Proposition 4.8. Let φ0 and φ1 be formulas such that φ0 =α
φ1 and letU be a set of variables. Then skU (φ0) =α skU (φ1).

Proof. Assume that φ0 =α φ1, then clearly FV (φ0) = FV (φ1)
and sowe findU∩FV (φ0) = � iffU∩FV (φ1) = �. Thismeans
that in caseU ∩ FV (φ0) = � we have skU (φ0) = skU (φ1) = s .
In case that U ∩ FV (φ0) , � we prove the claim by in-

duction on the length of φ0. We only treat the fixpoint case,
that is, where φ0 is of the form φ0 = ηx0.ψ0. As φ0 =α φ1 the
formula φ1 must be of the form φ1 = ηx1.ψ1.

Fix a fresh variable z, then we have (*)ψi = ψi [z/xi][xi/z].
We will now bring each skU (φi), for i = 0, 1, into a certain
shape. Note that by Proposition 4.5 we may without loss of

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

generality assume that xi < U . Then we may calculate

skU (φi) = ηxi .skU∪{xi }(ψi) (Def. of sk)
= ηxi .skU∪{xi }(ψi [z/xi][xi/z]) (*)
= ηxi .

(
skU∪{z }(ψi [z/xi])

)
[xi/z] (Prop. 4.7)

=α ηz.skU∪{z }(ψi [z/xi]) (Prop. 3.6(8))

Now observe that by Proposition 3.6(3)) it follows from
ηx0.ψ0 =α ηx1.ψ1 that ψ0[z/x1] =α ψ1[z/x1]. Hence by the
induction hypothesis we obtain that skU∪{z }(ψ0[z/x0]) =α
skU∪{z }(ψ1[z/x1]), so that by Proposition 3.6(11)), we find
that

ηz.skU∪{z }(ψ0[z/x0]) =α ηz.skU∪{z }(ψ1[z/x1]).

But then from the above calculation of skU (φi) we may con-
clude that skU (φ0) =α skU (φ1), as required. □

Skeletal Formulas & Their Closure
The key property of skeletal formulas is that they have lean
closure sets. To prove this, we first show that skeletal sets of
formulas are lean themselves.

Proposition 4.9. Let Φ be a skeletal set of formulas. Then Φ
is lean.

Proof. Suppose Φ is skeletal. We will show that in fact

φ0 =α φ1 implies φ0 = φ1. (7)

holds for every pair of formulas φ0,φ1 ∈
⋃
φ ∈Φ Sfor(φ). This

proves the Proposition, since obviously Φ ⊆
⋃
φ ∈Φ Sfor(φ).

Our proof of (7) proceeds by induction on the structure of
φ0.

If φ0 is a literal, the claim is trivial. In case φ0 is a conjunc-
tion, disjunction or a modal formula of the form ♥ψ1, the
claim easily follows by induction.

Now suppose thatφ0 = η0x0.ψ0, Then by Proposition 3.6(2),
φ1 must be of the form φ1 = η1x1.ψ1, where η0 = η1 — so
that we may write η in the sequel. By Proposition 3.6(3) we
have ψ0[z/x0] =α ψ1[z/x1] for a fresh variable z. It follows
from Proposition 4.8 that skz (ψ0[z/x0]) =α skz (ψ1[z/x1]). By
Proposition 4.7 we have skz (ψi [z/xi]) = skxi (ψi)[z/xi] for
i = 0, 1. Therefore, as z was fresh, we obtain ηx0.skx0 (ψ0) =α
ηx1.skx1 (ψ1) by definition of =α . As Φ is skeletal this implies
x0 = x1 = x and thus by Proposition 3.6(4)) that ψ0 =α ψ1.
The induction hypothesis yields ψ0 = ψ1 which obviously
implies φ0 = φ1 as required. □

The next proposition states that the closure of a skeletal
set is skeletal.

Proposition 4.10. Let Ψ be a skeletal set of tidy formulas.
Then Clos(Ψ) is skeletal as well.

Proof. Clearly it suffices to show that, if Φ′ is obtained from
a skeletal set Φ of tidy formulas by applying one of the rules
for deriving the closure, then Φ′ is also skeletal.

The only case where this is non-trivial is when Φ′ = Φ ∪

{φ[ηxφ/x]} for some formula ηx .φ ∈ Φ. Consider a pair of
formulasφ0 = η0x0.ψ0 andφ1 = η1x1.ψ1 that are subformulas
of some formulas inΦ′. In order to show thatφ0 andφ1 satisfy
(5), we distinguish the following cases.

Case 1: Both φ0 and φ1 are subformulas of formulas in Φ.
Then (5) follows from the fact that Φ is skeletal.

Case 2: Neither φ0 nor φ1 is a subformula of a formula in Φ.
In this case, both φ0 and φ1 are subformulas of φ[ηxφ/x], and
since they cannot be subformulas of ηxφ/x ∈ Φ, this means
that φ0 and φ1 are of the form φ0 = η0x0.ψ

′
0[ηx .φ/x] and

φ1 = η1x1.ψ
′
1[ηx .φ/x], respectively, for subformulas η0x0.ψ ′

0
and η1x1.ψ ′

1 of φ. Then we have skxi (ψ ′
i [ηx .φ/x]) = skxi (ψ ′

i)

for i ∈ {0, 1} by Proposition 4.6. Thus we find

x0 = x1

iff η0x0.skx0 (ψ
′
0) =α η1x1.skx1 (ψ

′
1)

iff η0x0.skx0 (ψ
′
0[ηx .φ/x]) =α η1x1.skx1 (ψ

′
1[ηx .φ/x]),

where the first equivalence is a consequence of the fact that
property (5) holds for Φ by assumption.
Case 3: Exactly one of φ0 and φ1 is a subformula of a

formula in Φ. Say, without loss of generality, that φ0 is a
subformula of a formula in Φ, while (reasoning as in the
previous case) φ1 = η1x1.ψ ′[ηx .φ/x] with η1x1.ψ ′ P φ. As Φ
is skeletal we have

x0 = x1 iff η0x0.skx0 (ψ0) = η1x1.skx1 (ψ
′).

By Proposition 4.6 we have skx1 (ψ ′) = skx1 (ψ ′[ηx .φ/x]) =
skx1 (ψ1) and thus we obtain

x0 = x1 iff η0x0.skx0 (ψ0) = η1x1.skx1 (ψ1)

as required. □

As an immediate consequence of the Propositions 4.10
and 4.9, we establish the key property of skeletal formulas.

Proposition 4.11. Let φ be a tidy skeletal formula. Then the
set Clos(φ) is lean.

The skeletal renaming
We are now ready to define the renaming map ·̂ . It will be
convenient to introduce a setZ of fresh variables from which
we will draw the bound variables of the formulas ξ̂ .

Definition 4.12. Let X and Z be two (disjoint) sets of vari-
ables. We let µMLX denote the set of µ-calculus formulas taking
their variables (free or bound) from X , and we let µMLX ,Z
denote the set of formulas ξ in µMLX∪Z such that BV (ξ) ⊆ X .

In the definition belowwe assume that the setZ contains a
distinct variable zE for every α-equivalence class E of µMLX -
formulas.

Size measures and alphabetic equivalence in the µ-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

Definition 4.13. We define the renamed version φ̂ ∈ µMLZ ,X
of a formula φ ∈ µMLX as follows:

φ̂ := φ (φ atomic)
♥̂φ := ♥φ̂ (♥ ∈ {3,2})�φ0 ⊙ φ1 := φ̂0 ⊙ φ̂1 (⊙ ∈ {∨,∧})
η̂x .φ := ηzE .φ̂[zE/x] (η ∈ {µ,ν })

where, in the last clause, E = Lηx .skx (φ)M.

Remark 4.14. The renamed version of φ ∈ µMLX will only
contain variables from the set Z that are bound. These bound
variables can be replaced by fresh variables from X in order to
obtain a renamed version in µMLX .

Example 4.15. 1) Compare the formulas ξ0 and ξ1, where

ξi := µxi .νyi .3xi ∨ (p ∧2yi),

for i ∈ {0, 1}. We will abbreviateψi := 3xi∨(p∧2yi). Clearly
we have ξ0 =α ξ1, and so we want to obtain ξ̂0 = ξ̂1.

To see that this will indeed be the case, observe that

skxi (νyi .ψi) = νyi .3xi ∨ (s ∧2yi)
skyi (ψi) = s ∨ (s ∧2yi)

Defining Ei := Lµxi .νyi .3xi ∨ (s ∧ 2yi)M and Fi := Lνyi .s ∨
(s ∧ 2yi)M, we observe that these definitions in fact do not
depend on i , so that we may simply denote these α-cells as E
and F , respectively. We then compute, for each i ∈ {0, 1}:

ξ̂i = µzE .�νyi .ψi [zE/xi]
= µzE .

(
νzF .ψ̂i [zF /yi]

)
[zE/xi]

= µzE .
(
νzF .ψi [zF /yi]

)
[zE/xi]

= µzE .
(
νzF .3xi ∨ (p ∧2zF)

)
[zE/xi]

= µzE .νzF .3zE ∨ (p ∧2zF)

and find that ξ̂0 = ξ̂1 as desired.
2) Now consider the formula

φ = νy.(3(µx .(νz.3(x ∧ z)) ∧ y)),

which is α -equivalent to the unfolding (νy.3(x ∧ y))[ψ/x] of
ψ = µx .νy.3(x ∧ y). Furthermore let E1 = Lνy.3(s ∧ y)M and
E2 = Lµx .νy.3(x ∧ y)M. Then

φ̂ = νzE1 .(3(µzE2 .(νzE1 .3(zE2 ∧ zE1)) ∧ zE1)),

where we point out the re-use of the variable zE1 . Note that φ
is an example where Clos(φ̂) is properly smaller than Clos(φ).

Our first goal is to show that the map ·̂ is indeed a re-
naming, i.e., that the renamed version φ̂ of a formula φ is
α-equivalent to φ. To this aim we need the following rather
technical lemma.

Proposition 4.16. Let x and y be variables, let U be a set
of variables with y ∈ U , and let φ and ηx .ψ be formulas
such that y ∈ FV (ηx .ψ) and ηx .ψ P φ, while there is no

formula of the form λy.χ such that ηx .ψ P λy.χ P φ. Then
skx (ψ) ≠α skU (φ).

Proof. By Proposition 3.5 it suffices to show that

|skx (ψ)|ℓ < |skU (φ)|ℓ,

and we will prove this by induction of the length of the
shortest direct-subformula chain ηx .ψ ◁0 · · · ◁0 φ witnessing
that ηx .ψ is a subformula of φ. Further details can be found
in [?]. □

Proposition 4.17. Let ξ be a µ-calculus formula. Then ξ̂ is
tidy and ξ =α ξ̂ .

Proof. The proof that ξ̂ is tidy is easy and therefore left to
the reader. We prove the claim that ξ =α ξ̂ by a formula
induction on ξ . If ξ is atomic, then ξ and ξ̂ are identical, and
so, certainly α-equivalent.

For the induction step, distinguish cases. If ξ is of the form
ξ = ξ0 ⊙ ξ1 for ⊙ ∈ {∧,∨}, then the claim is an immediate
consequence of the induction hypothesis and the fact that�ξ0 ⊙ ξ1 = ξ̂0 ⊙ ξ̂1. The case where ξ is of the form ξ = ♥ξ ′

for ♥ ∈ {3,2} is equally simple.
The interesting case is where ξ is of the form ξ = λy.φ.

Then ξ̂ = λzE .φ̂[zE/y], with E = Lλy.sky (φ)M. We first claim
that

zE is free for y in φ̂. (8)
To see this, suppose for contradiction that y occurs freely
in the scope of a binder ηzE in ξ̂ . Then there must be a
subformula ηx .ψ of φ with �ηx .ψ = ηzE .ψ̂ [zE/x] such that
y ∈ FV (ψ). By definition of ·̂ we have E = Lηx .skx (ψ)M
and so ηx .skx (ψ) =α ηy.sky (φ) by our assumption that E =
Lηy.sky (φ)M. It follows by Proposition 4.16 that there must
be a formula λy.χ such that ηx .ψ P λy.χ P φ; without
loss of generality we may take λy.χ to be the smallest such
formula (in terms of the subformula ordering). But from this
we may infer that actually, when computing the formula ξ̂ ,
the variable y ∈ FV (ηx .ψ) will be replaced by the variable
zE′ , where E ′ = Lλy.sky (χ)M. In other words, the alleged free
occurrence in ξ̂ of the variabley, within the scope of a binder
ηzE , is not actually possible. Clearly this implies (8).

From this we reason as follows. By the induction hypothe-
sis we obtain that φ̂ =α φ. Now, because of (8), we may apply
Proposition 3.6(8) and obtain ξ̂ = λzE .φ̂[zE/y] =α λy.φ = ξ
as required. □

We now show that the renaming operation always pro-
duces skeletal formulas.

Proposition 4.18. Let φ be a µ-calculus formula. Then φ̂ is
skeletal.

Proof. As a preparatory step, consider an arbitrary subfor-
mula of φ̂ of the form ηzE .ψ . By definition of ·̂ there is a

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

subformula ηx .ξ of φ such that E = Lηx .skx (ξ)M and ψ =
ξ̂ [zE/x][z1/x1] . . . [zn/xn]. Then we have

ηzE .skzE (ψ)
= ηzE .skzE (ξ̂ [zE/x][z1/x1] . . . [zn/xn])
= ηzE .skzE (ξ̂ [zE/x]) (Prop. 4.6)
= ηzE .skx (ξ̂)[zE/x] (Prop. 4.7)
=α ηx .skx (ξ̂)
=α ηx .skx (ξ) (Prop. 4.17)

where the last statement uses the instantiation of Proposi-
tion 4.8 stating that φ0 =α φ1 implies skx (φ0) =α skx (φ1).
We now turn to the argument as to why φ̂ is skeletal.

Suppose that we have two subformulas η0zE0 .ψ0 and η1zE1 .ψ1
of φ̂. We need to prove that

zE0 = zE1 iff η0zE0 .skzE0 (ψ0) =α η1zE1 .skzE1 (ψ1). (9)
By the earlier observation theremust be formulasηixi .ξi P φ
such that, with Ei = Lηixi .skxi (ξi)M, we have ηizEi .skzEi (ψi)
=α ηixi .skxi (ξi).
In order to prove (9), first assume that zE0 = zE1 . Then

E0 = E1, so that η0x0.skx0 (ξ0) =α η1x1.skx1 (ξ1). It follows
that η0 = η1 and so we find

η0zE0 .skzE0 (ψ0) =α η0x0.skx0 (ξ0)
=α η1x1.skx1 (ξ1)
=α η1zE1 .skzE1 (ψ1)

as required.
Conversely, if ηzE1 .skzE1 (ψ1) =α ηzE2 .skzE2 (ψ2), then we

have ηx1.skx1 (ξ1) =α ηx2.skx2 (ξ2)which implies E1 = E2 and
thus zE1 = zE2 . □

What is left to show is condition (3).
Proposition 4.19. Let ξ0 and ξ1 be formulas such that ξ0 =α
ξ1. Then ξ̂0 = ξ̂1.

Proof. We can use a trick here. Let ξ0 and ξ1 be formulas such
that ξ0 =α ξ1, and consider the formula ξ := ξ0 ∧ ξ1. Since
we have ξ̂ = ξ̂0 ∧ ξ̂1, both formulas ξ̂0 and ξ̂1 belong to the
closure of ξ̂ . But ξ̂ is skeletal by Proposition 4.18, so Clos(ξ̂)
must be lean by Proposition 4.11. In particular, this means
that ξ̂0 = ξ̂1, as required. □

Summarizing properties of the skeletal renaming
We now briefly check that the map ·̂ : µMLX → µMLZ ,X has
all the properties that are required for the proof of Theo-
rem 1.1. First of all, we proved in Proposition 4.17 that ·̂ is
indeed a renaming, which takes care of (2). The same Propo-
sition also states that ξ̂ is always tidy (even if ξ itself is not).
We saw in Proposition 4.19 that ·̂ maps α-equivalent formu-
las to the same representative element of their=α -cell, which
means that ·̂ meets condition (3). Finally, as an immediate
consequence of Proposition 4.18 and Proposition 4.11 we see
that it also satisfies (4): for every µ-calculus formula ξ , the
closure of its renaming ξ̂ is lean indeed.

An α-invariant size measure
Recall that a size measure for µ-calculus formulas is an at-
tribute s : µML → ω that is induced by some representation
ξ 7→ Gξ of µML-formulas as parity formulas in the sense that
s(ξ) = |Gξ |. In the previous section we saw that although
closure size is a suitable size measure, it is not α-invariant.
As a further contribution of this paper, we can now pro-
vide the definitions of a size measure that is invariant under
alphabetic equivalence, and defined for arbitrary (i.e., not
necessarily tidy) formulas.

Definition 4.20. We define the size of a µ-calculus formula
ξ by putting

|ξ | := |Clos(ξ)/=α |. (10)

Theorem4.21. Themap |·| provides anα -invariant size mea-
sures for µ-calculus formulas.

Proof. As in the proof of Theorem 1.1 (given in the intro-
duction), we define Pξ := Gξ̂ for any µ-calculus formula ξ ,
where ξ 7→ Gξ is the construction referred to in Fact 2.3.
Since Pξ is equivalent to ξ , in order to prove the Proposition
it suffices to show that

|ξ | = |Pξ |.

But this is rather straightforward:

|ξ | = |Clos(ξ)/=α | (def. |·|)

= |Clos(ξ̂)/=α | (Prop’s 4.17 & 3.8)

= |Clos(ξ̂)| (Prop’s 4.18 & 4.11)
= |Pξ | (Fact 2.3)

Finally, theα-invariance of |·| as a size measures is immediate
by its definition and Proposition 3.8. □

The following observation shows that the size measure
(10) interacts nicely with the notion of substitution (as de-
fined in the previous section for arbitrary formulas). Its proof
can be found in the technical report [?].

Proposition 4.22. Let ξ andψ be µ-calculus formulas. Then

|ξ [ψ/x]| ≤ |ξ | + |ψ |. (11)

5 Conclusion
5.1 Main conclusion
The algorithms that are used to solve computational prob-
lems related to the modal µ-calculus generally do not take
the formulas themselves as input, but operate on some kind
of graph representation of standard formulas. In this paper
we studied the impact of alphabetic equivalence on a uniform
representation of this kind: parity formulas. Our main result,
Theorem 1.1, states that with a µ-calculus formula ξ , we may
associate a parity formula of size at most |Clos(ξ)/=α | and
index at most ad(ξ). As a consequence, complexity results
that are rooted in algorithms operating on parity formulas

Size measures and alphabetic equivalence in the µ-calculus LICS ’22, August 2–5, 2022, Haifa, Israel

(or on alternating tree automata or hierarchical equation
systems) can be formulated without ambiguity for standard
µ-calculus formulas, where the size measure of a formula
ξ ∈ µML is taken to be the number of formulas in the closure
of ξ , up to alphabetic equivalence.

5.2 Discussion: other ways to represent α-cells
In the introduction to this paperwe alreadymentioned the ex-
istence of alternative proofs of our main result, Theorem 1.1.
As in the approach followed in this paper, the idea under-
lying these alternative proofs is to construct, given a fixed
but arbitrary formula ξ , a parity formula Pξ of which the
vertices somehow represent the =α -cells of the set Clos(ξ).

To motivate alternative approaches, it can be argued that
the representation of =α -cells via the renaming map ·̂ is
somewhat arbitrary. One might prefer a more canonical rep-
resentation, for instance one that uses so-called de Bruijn
indices. These originate from the theory of the λ-calculus [7]
and provide a tool for writing down expressions (in a lan-
guage that features binding) without naming the bound vari-
ables.
Concretely, de Bruijn indices are natural numbers that

represent bound variables. More specifically, an occurrence
of an index n in an expression represents the variable that
is bound at the unique place in the construction tree that is
reached from the occurrence by moving up, in the syntax
tree of the expression, until the n-th binder is reached. As
an example, the µ-calculus formula µx (3x ∧ νy2((x ∧y) ∨
νx (x∧p)))would be written as µ (31∧ν 2((2∧1)∨ν (1∧p)))
using de Bruijn indices. Here, the key feature of interest of
this tool is that

ξ0 =α ξ1 iff ξ dB0 = ξ
dB
1

where ξ dB denotes the formula ξ ∈ µML, converted into de
Bruijn format.
Based on this observation one could take, for the car-

rier of the parity formula Pξ , the set [Clos(ξ)]dB := {ψ dB |

ψ ∈ Clos(ξ)}, which has the same cardinality as the set
Clos(ξ)/=α . Alternatively, one might set out to construct the
parity formula Pξ inside the de Bruijn version of the modal
µ-calculus, i.e., start with defining the closure set ClosdB(ξ dB)
of the de Bruijn conversion ξ dB of ξ , and then redo the con-
struction of [16] on the basis of this set. This would certainly
be interesting but also a rather formidable undertaking since
it would involve the development of a “de Bruijn version” of
the entire syntactic framework of the modal µ-calculus. We
leave this as an interesting direction for further research.
Next to using de Bruijn indices, there are other ways to

associate the vertices of a parity formula Pξ with the=α -cells
of the closure of ξ . For instance, one might work directly
with the =α -cells themselves, or equivalently, construct Pξ
on the basis of identifying α-equivalent formulas throughout.
This approach would also be interesting and certainly closer

to the principle of α-invariance as formulated in the introduc-
tion. On the other hand, it also might involve cumbersome
technicalities since the construction would undoubtedly in-
volve working with concrete formulas (as opposed to their
equivalence classes). Furthermore, note that in some sense,
our approach here takes care of such technicalities by means
of the renaming function ·̂ .
Before finishing this discussion of alternative construc-

tions supporting the proof of Theorem 1.1, however, we want
to stress that the importance of the result lies in the exis-
tence of a parity formula Pξ satisfying the conditions listed
in its statement. The question as to how exactly the =α -cells
are represented in Pξ is of secondary importance. After all,
the names of the vertices of Pξ are nothing more than mere
place holders, so that a priori there is no added benefit if
these place holders are variable-free formulas. In particular,
one should see the parity formula Pξ itself as a variable-free
representation of the µ-calculus formula ξ .

5.3 Suggestions for further research
Here are two other directions for further research. First,
we focussed on the closure graph of a µ-calculus formula
rather than its subformula dag, since (by the results of Bruse,
Friedmann & Lange [4]) the closure graph can be exponen-
tially more succinct. Nevertheless, one may have reasons to
work with the subformula dag (corresponding to measuring
a formula by its subformula-size), and still be interested in
a (relatively) succinct, α-invariant way of representing for-
mulas. In fact, similar to the skeletal renaming ·̂ , one may
define a renaming ·̃ of µ-calculus formulas with the proper-
ties that ξ0 =α ξ1 iff ξ̃0 = ξ̃1, and alphabetic equivalence is
the identity relation on the collection of subformulas of ξ̃
(i.e., Sfor(ξ̃) is lean). We hope to get back to this in future
work.

Second, parity formulas, combining features of formulas
and automata, are interesting objects in their own right. A
first step in the development of their theory would be the
definition of appropriate notions of morphisms and struc-
tural equivalence relations (“bisimulations”) between parity
formulas. It would then be of particular interest to study the
notion of alphabetic equivalence in this light, as well as the
skeletal renaming introduced in this paper.

Acknowledgments
We would like to thank the anonymous reviewers for their
helpful comments and suggestions. The research of the first
author was funded by a Leverhulme Trust Research Project
Grant, project nr. RPG-2020-232. The research of the second
author has been made possible by a grant from the Dutch
Research Council NWO, project nr. 617.001.857.

LICS ’22, August 2–5, 2022, Haifa, Israel Kupke, Marti and Venema

References
[1] B. Afshari and G. Leigh. 2017. Cut-free Completeness for Modal Mu-

Calculus. In Proceedings of the 32nd Annual ACM/IEEE Symposium on
Logic In Computer Science (LICS’17). IEEE Computer Society, 1–12.

[2] A. Arnold and D. Niwiński. 2001. Rudiments of µ-calculus. Studies in
Logic and the Foundations of Mathematics, Vol. 146. North-Holland
Publishing Co., Amsterdam.

[3] J. Bradfield and C. Stirling. 2006. Modal µ-calculi. In Handbook of
Modal Logic, J. van Benthem, P. Blackburn, and F.Wolter (Eds.). Elsevier,
721–756.

[4] F. Bruse, O. Friedmann, andM. Lange. 2015. On guarded transformation
in the modal µ-calculus. Logic Journal of the IGPL 23, 2 (2015), 194–216.

[5] C.S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. 2017. De-
ciding parity games in quasipolynomial time. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, (STOC
2017), H. Hatami, P. McKenzie, and V. King (Eds.). 252–263.

[6] G. D’Agostino and M. Hollenberg. 2000. Logical questions concerning
the µ-calculus. Journal of Symbolic Logic 65 (2000), 310–332.

[7] N. G. de Bruijn. 1972. Lambda Calculus notation with nameless dum-
mies: a tool for automatic formula manipulation. Indagationes Mathe-
maticae 34 (1972), 381âĂŞ392.

[8] S. Demri, V. Goranko, andM. Lange. 2016. Temporal Logics in Computer
Science: Finite-State Systems. Cambridge University Press.

[9] E.A. Emerson and C.S. Jutla. 1991. Tree automata, mu-calculus and
determinacy (extended abstract). In Proceedings of the 32nd Symposium
on the Foundations of Computer Science. IEEE Computer Society Press,
368–377.

[10] G. Fontaine and Y. Venema. 2018. Somemodel theory for the modal mu-
calculus: syntactic characterizations of semantic properties. Logical
Mewthods in Computer Science 14, 1 (2018).

[11] E. Grädel, W. Thomas, and T. Wilke (Eds.). 2002. Automata, Logic, and
Infinite Games. LNCS, Vol. 2500. Springer.

[12] D. Janin and I. Walukiewicz. 1995. Automata for the modal µ-calculus
and related results. In Proceedings of the Twentieth International Sym-
posium on Mathematical Foundations of Computer Science, MFCS’95
(LNCS), Vol. 969. Springer, 552–562.

[13] D. Janin and I. Walukiewicz. 1996. On the Expressive Completeness
of the Propositional µ-Calculus w.r.t. Monadic Second-Order Logic.
In Proceedings of the Seventh International Conference on Concurrency
Theory, CONCUR ’96 (LNCS), Vol. 1119. 263–277.

[14] D. Kozen. 1983. Results on the propositional µ-calculus. Theoretical
Computer Science 27 (1983), 333–354.

[15] D. Kozen and R. Parikh. 1983. A decision procedure for the proposi-
tional µ-calculus. In Proceedings of the Workshop on Logics of Programs
1983 (LNCS). 313–325.

[16] C. Kupke, J. Marti, and Y. Venema. 2022. Succinct graph representations
of µ-calculus formulas. In Proceedings of the 30th EACSL Annual Con-
ference on Computer Science Logic, CSL 2022 (LIPIcs). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik.

[17] A. Mader. 1995. Modal µ-Calculus, Model Checking and Gauß Elimina-
tion. In Proceedings of the First International Workshop onTools and Al-
gorithms for Construction and Analysis of Systems, (TACAS ’95) (LNCS),
E. Brinksma, R. Cleaveland, K. G. Larsen, T. Margaria, and B. Steffen
(Eds.), Vol. 1019. Springer, 72–88.

[18] D. Niwiński. 1986. On fixed point clones. In Proceedings of the 13th
International Colloquium on Automata, Languages and Programming
(ICALP 13) (LNCS), L. Kott (Ed.), Vol. 226. 464–473.

[19] H. Seidl and A. Neumann. 1999. On guarding nested fixpoints. In
Proceedings of the 8th EACSL Annual Conference on Computer Science
Logic, CSL ’99. 484–498.

[20] C. Stirling. 2001. Modal and Temporal Properties of Processes. Springer-
Verlag.

[21] I. Walukiewicz. 2000. Completeness of Kozen’s axiomatisation of the
propositional µ-calculus. Information and Computation 157 (2000),

142–182.
[22] T. Wilke. 2001. Alternating tree automata, parity games, and modal

µ-calculus. Bulletin of the Belgian Mathematical Society 8 (2001), 359–
391.

	Abstract
	1 Introduction
	1.1 The modal -calculus
	1.2 Graph representations of -calculus formulas
	1.3 The size of formula representations
	1.4 Variable binding and alphabetic equivalence
	1.5 A succinct -invariant representation

	2 Preliminaries
	2.1 Syntax of the -calculus
	2.2 Compositional semantics of the -calculus
	2.3 Parity formulas

	3 Alphabetic equivalence
	4 -invariance via skeletal renaming
	5 Conclusion
	5.1 Main conclusion
	5.2 Discussion: other ways to represent -cells
	5.3 Suggestions for further research

	References
	A Proofs
	A.1 Proposition 3.6
	A.2 Proposition 3.5
	A.3 Proposition 4.6
	A.4 Proposition 4.7
	A.5 Proposition 4.16
	A.6 Proposition 4.22

