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Abstract

We present sound and complete sequent calculi for the modal mu-
calculus with converse modalities, aka two-way modal mu-calculus. No-
tably, we introduce a cyclic proof system wherein proofs can be repre-
sented as finite trees with back-edges, i.e., finite graphs. The sequent
calculi incorporate ordinal annotations and structural rules for managing
them. Soundness is proved with relative ease as is the case for the modal
mu-calculus with explicit ordinals. The main ingredients in the proof of
completeness are isolating a class of non-wellfounded proofs with sequents
of bounded size, called slim proofs, and a counter-model construction that
shows slimness suffices to capture all validities. Slim proofs are further
transformed into cyclic proofs by means of re-assigning ordinal annota-
tions.

1 Introduction

The modal µ-calculus is an extension of basic modal logic with least and great-
est fixpoint operators. The additional operators are given an interpretation
that breaks the locality of modal logic. Notably, the calculus can express all
bisimulation-invariant monadic second-order properties [10]. As a consequence,

ACM CCS • Theory of computation - Logic - Proof theory • Theory of computation -
Logic - Modal and temporal logics • Theory of computation - Logic - Logic and verification

∗This work was supported by the Knut and Alice Wallenberg Foundation [2020.0199],
Swedish Research Council [2020-01873, 2017-05111], and Dutch Research Council
[OCENW.M20.048, 617.001.857].

1



well-studied modal logics such as the temporal logics LTL, CTL, CTL∗ and the
program logic PDL can be translated into the µ-calculus. Many theoretical re-
sults on the modal µ-calculus have been established through its connection with
automata theory and the theory of infinite games [7], the central observation
being that every formula can be represented as an alternating tree automaton,
and vice versa, such that the automaton accepts an infinite tree if and only if
the tree is a model of the formula [9, 22].

The two-way modal µ-calculus, also known as the full µ-calculus, is an ex-
tension of the µ-calculus with modal operators for converses of accessibility
relations. Thus, in addition to the standard modalities [a] and 〈a〉 that quantify
over a-successors (states reachable via a single a-labeled transition), the two-
way µ-calculus includes modalities [ă] and 〈ă〉 quantifying over a-predecessors. A
central result, due to Vardi [21], is that the satisfiablity problem for the two-way
µ-calculus is decidable in exponential time. To prove this result, Vardi intro-
duces a notion of (alternating) two-way automaton and shows that for every
formula of the two-way µ-calculus there is a two-way automaton that accepts
an infinite tree if and only if the tree encodes a model of the formula. The
decidability result then follows with a construction that provides for every two-
way automaton an equivalent nondeterministic parity tree automaton. Vardi’s
construction does not induce a translation of two-way µ-calculus formulas into
equivalent µ-calculus formulas. The translation merely preserves satisfiability
and validity. Indeed, two-way µ-calculus is strictly more expressive than its
‘one-way’ fragment, for instance it lacks the finite model property [19].

We present a sound and complete sequent calculus for the two-way µ-calculus.
The proof theory of the logic has not been extensively explored. It is still an
open question whether the calculus is complete with respect to a Hilbert-style
axiomatisation that includes Kozen’s induction rule for the fixpoint operators.
A complete finitary Hilbert-style axiomatisation of “flat” fragments is given in
[6] and a cyclic system for the alternation-free fragment in [14]. A sound and
complete infinitary proof system for the full calculus is provided in [2]. The
system we present here is finitary. More precisely, proofs are represented as
finite (cyclic) graphs with a local correctness criterion on simple cycles.

The proof system we introduce is a variant of systems developed for the
modal µ-calculus by Dam and Gurov [4] and for the first-order µ-calculus by
Dam and Sprenger [17]. It further incorporates ideas developed by Jungteer-
apanich [11] and Stirling [18], using a derivation rule influenced by the Safra-
construction for ω-automata to formulate the correctness criterion on cycles.
This approach has been utilised in [1] to introduce a path-based cyclic proof
system for first-order µ-calculus that is complete for the fragment correspond-
ing to the one-way µ-calculus.

The distinguishing feature of the proof systems developed by Dam and Gurov
is to work in an extended syntax with explicit variables referring to ordinal
approximants of least fixed-points, permitting the expression of propositions
like “the least fixed point of the map x 7→ ϕ(x) is reached at a smaller ordinal
than the least fixed point of x 7→ ψ(x)”. This added expressive power plays a
crucial role in our completeness proof, allowing us to build small saturated sets
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of formulas, called tiles, from which a tree-like counter-model for an unprovable
formula is constructed step by step. The added difficulty in the counter-model
construction (compared to the modal µ-calculus) is that what is true at a vertex
in the tree-model depends on both successors and predecessors of the vetex, a
condition that needs to be taken into account in the saturation process.

The heart of Vardi’s decision procedure for the two-way µ-calculus is the
use of auxiliary second-order variables as part of an extended alphabet for sim-
ulating non-determinism, allowing the simulating automaton to guess partial
information about “loops” that can occur as a result of an alternating two-way
automaton traversing the tree in both directions, i.e., ancestor to descendant
or descendant to ancestor. These variables can then be projected away. In our
setting, the “guessing” happens in the form of cuts on formulas that encode
(via ordinal variables) information about fixpoint unfoldings. We do not know
whether our system is complete without the cut rule. A crucial part of our
completeness argument, however, shows that the cut formulas can be chosen to
belong to a relatively small finite set. Therefore, although the proof system is
not cut-free, it does support automatic proof search.

Outline The structure of this paper is as follows: In Section 2 we discuss
the necessary preliminaries related to the two-way µ-calculus and annotated
formulas. Section 3 contains the definition of our cyclic proof system. In Sec-
tion 4 we prove that this system is sound. The completeness proof consists
of two parts: In Section 5 we first show completeness for a particular class of
non-wellfounded proofs, which we call slim proofs. In Section 6 we then show
that every slim proof can be transformed into a cyclic proof in our system.

2 Two-way µ-calculus

The syntax of the two-way µ-calculus makes use of the following non-logical
symbols: a countably infinite set Prop of propositional constants or proposition
letters (denoted p, q, p0, . . .), with an involution p 7→ p; a countably infinite set
Act of action symbols (denoted a, b, a0, . . .), with an involution a 7→ ă; and a
countably infinite set FV of fixed point variable symbols (denoted x, y, z, . . .).

It will be convenient for us to work with formulas that are in negation normal
form. That is, the set of (plain) two-way µ-calculus formulas is given by the
following grammar.

ϕ := p | p | x | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ | µxϕ | νxϕ

We will need the following basic syntactic definitions. The set Sfor(ϕ) of
subformulas of ϕ is defined as usual. The set of variables that occur in ϕ is
denoted as Var(ϕ). Since the fixpoint operators µ and ν bind the variables that
they occur with, we can define in a standard way the notions of free and bound
variables; a sentence is a formula without free variables. The unfolding of a
fixpoint formula σxϕ is the formula ϕ[σxϕ/x] that we obtain by substituting
σxϕ for x in ϕ; here we ensure that this substitution never causes variable
capture (so that no renaming of variables is needed). The closure Clos(Γ) of
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a set Γ of formulas is defined as the smallest set of formulas that is closed
under taking boolean subformulas, modal subformulas, unfoldings of fixpoint
formulas, and single negations. It is well-known that for every formula ϕ the
closure Clos({ϕ}) is a finite set.

The semantics of formulas is given in terms of models M = (W,R, V ), where
W is any set, R provides for every a ∈ Act a relation Ra ⊆ W ×W such that
Ră is the converse Ră = {(v, w) | (w, v) ∈ Ra} of Ra for all a ∈ Act, and
V : Prop → PW is any function. The elements of W are called worlds, the
relation Ra is the accessibility relation for a and the function V is the valuation
function.

The semantic clauses for the two-way µ-calculus are completely standard.
The boolean and modal connectives are interpreted as in modal logic, where
the relation Ra is used for the modality 〈a〉. The semantic value of the fixpoint
formulas µxϕ and νxϕ are the least and greatest fixpoints of the monotone
map that describes the interpretation of ϕ as depending on an interpretation
of the variable x. A precise formulation of the semantic clauses is given in the
following subsection. The two-way µ-calculus introduced here is a fragment of
the language of annotated formulas that is discussed in the following subsection.

2.1 Annotated formulas

The proof systems that we shall introduce here admit formulas with quanti-
fied versions of the fixpoint operators, involving a countable set OV of ordinal
variables (denoted κ, λ, κ0, . . .). Since we will also allow quantifiers over these
ordinal variables, the formulas that we work with will be of the following form:

ϕ := p | p | x | ϕ ∧ ϕ | ϕ ∨ ϕ | [a]ϕ | 〈a〉ϕ | µxϕ | νxϕ |
µxκ ϕ | νxκ ϕ | ∀κ < λϕ | ∃κ < λϕ

A formula which does not contain any ordinal variables, i.e., a formula of the
two-way modal µ-calculus, is called plain. The underlying plain formula of a
formula ϕ, denoted u(ϕ), is the plain formula obtained from erasing all ordinal
annotations and quantifiers from ϕ:

u(x) = x u(ϕ ∧ ψ) = u(ϕ) ∧ u(ψ) u([a]ϕ) = [a]u(ϕ)

u(p) = p u(ϕ ∨ ψ) = u(ϕ) ∨ u(ψ) u(〈a〉ϕ) = 〈a〉u(ϕ)

u(ηxκϕ) = ηx u(ϕ) u(∀λ < κϕ) = u(ϕ)

u(ηxϕ) = ηx u(ϕ) u(∃λ < κϕ) = u(ϕ)

The semantics of this language can be defined as follows. If f : PW → PW
is a monotone function on the powerset of W we identify two ways of iterating
f along ordinals: fκ> ∈ PW denotes the result of iterating f κ-many times on
the starting from W , and fκ⊥ ∈ PW the κ-th iterant of f starting from ∅:

fκ> =
⋂
ξ<κ

f(fξ>) fκ⊥ =
⋃
ξ<κ

f(fξ⊥)
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Note, f0
> = W and f0

⊥ = ∅. Given a model M = (W,R, V ), an ordinal as-
signment is a map o assigning an ordinal o(κ) to each ordinal variable κ. Then
the meaning [[ϕ]]oM of a formula ϕ in this model and under this assignment is
inductively defined as follows. We write [[λx.ϕ]] to express the monotone map
Z 7→ [[ϕ]]oM [x 7→Z] on PW .

• For a propositional variable p, [[p]]oM = V (p).

• Standard clauses for booleans and modalities.

• [[µxκ.ϕ]]oM is the o(κ)-th iterant of [[λx.ϕ]] on ∅, namely [[µxκ.ϕ]]oM =

[[λx.ϕ]]
o(κ)
⊥ .

• [[νx.ϕκ]]oM is the o(κ)-th iterant of [[λx.ϕ]] on W , namely [[νxκ.ϕ]]oM =

[[λx.ϕ]]
o(κ)
> .

• [[µx.ϕ]]oM is the least fixpoint [[λx.ϕ]], namely [[µx.ϕ]]oM =
⋃
ξ[[λx.ϕ]]ξ⊥.

• [[νx.ϕ]]oM is the greatest fixpoint of [[λx.ϕ]], namely [[νx.ϕ]]oM =
⋂
ξ[[λx.ϕ]]ξ>.

• [[∃λ < κ.ϕ]]oM = {u ∈W | ∃ξ < o(κ) : u ∈ [[ϕ]]
o[λ7→ξ]
M }.

• [[∀λ < κ.ϕ]]oM = {u ∈W | ∀ξ < o(κ) : u ∈ [[ϕ]]
o[λ7→ξ]
M }.

We write M,u �o ϕ if u ∈ [[ϕ]]oM . If ϕ is a plain formula we may write simply
M,u � ϕ.

We think of negation as an operation on sentences, extending the involution
on proposition letters, and determined by connective duality. Inductively we
define the operation ϕ 7→ ϕ for all formulas:

x = x ϕ ∧ ψ = ϕ ∨ ψ [a]ϕ = 〈a〉ϕ µxκϕ = νxκ ϕ ∀λ < κϕ = ∃λ < κϕ

ϕ ∨ ψ = ϕ ∧ ψ 〈a〉ϕ = [a]ϕ νxκϕ = µxκ ϕ ∃λ < κϕ = ∀λ < κϕ

It is routine to show that on the set of sentences this operation indeed behaves
as classical negation. Furthermore, observe that this operation is an involution
on the set of formulas, and that the negation of a plain formula is plain.

2.2 Subsumption, well-annotated formulas and active vari-
ables

In this subsection we define some notions that are not needed in the definition
of the proof systems but play a key role in our reasoning about the properties
of the proof system.

The subsumption order <ρ associated with a formula ρ is defined as the
smallest preorder on Var(ρ) such that x <ρ y if ρ has a subformula σyψ of
which x is a free variable. Observe that the subsumption order of a fixpoint
formula is identical to that of its unfolding. By taking, if needed, alphabetic

5



variants (i.e., renaming the bound variables in ρ) we may always assume that
the subsumption order of a given formula is a strict partial order. It may
occasionally be convenient to make the following assumption which is possible
without loss of generality.

Convention 2.1. In some parts of this paper we will restrict attention to a
fixed finite set Γ0 of plain formulas in which distinct occurrences of fixed point
quantifiers are associated with distinct variables, and its closure. We then may
assume a strict partial order < on the set of fixpoint variables occurring in Γ0

which is such that < ⊇ <ϕ ∩ (Var(ϕ)×Var(ϕ)), for all ϕ ∈ Clos(Γ0). The order
< will be referred to as the subsumption order. If x < y we refer to x as being
higher ranked than y.

Definition 2.2. An annotation is a partial function from fixed point variables
to ordinal variables. Let x0, x1, . . . enumerate the fixed point variables in de-
creasing order with respect to subsumption. Given an annotation o and n ∈ ω,
o � n is the restriction of o to the domain {xi | i < n}. Given a plain formula ϕ
and annotation o : FV→ OV define a (nonplain) formula ϕo as follows:

xo = x (ψ ∧ θ)o = ψo ∧ θo ([a]ϕ)o = [a]ϕo

po = p (ψ ∨ θ)o = ψo ∨ θo (〈a〉ϕ)o = 〈a〉ϕo

(ηxiψ)o =

{
ηx

o(xi)
i ψo�i, if xi ∈ domo,

ηxiψ
o�i, otherwise.

Definition 2.3. A formula ϕ is well-annotated if there exists an annotation
o such that ϕ = u(ϕ)o. The annotation o satisfying this equation with small-
est domain is named oϕ. ϕ is positively annotated if it is well-annotated and
dom(oϕ) consists only of ν-fixed point variables of ϕ. The negation of a posi-
tively annotated formula is said to be negatively annotated.

Note that plain formulas are positively annotated, and that well-annotated
formulas do not contain quantifiers.

Definition 2.4. Given a set of formulas Γ, we say that an ordinal variable κ is
active in Γ if κ occurs free in some positively annotated formula in Γ. The set
of active variables in Γ is denoted as Act(Γ).

2.3 Game semantics

In this section we briefly review the game-theoretic semantics for the two-way
µ-calculus; this will prove to be a useful approach in the completeness argument
further on.

The evaluation game E(M,ϕ) of a formula ϕ on a model M = (W,R, V ) is
a infinite board game, the players of which we shall call Verifier and Falsifier.
The positions of the game are all pairs of the form (w,ψ), where w ∈ W and
ψ ∈ Clos(ϕ). The player to move at a given position and the moves at his or
her disposal are listed in Table 1.
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Position Player Moves
(w, p) for w ∈ V (p) Falsifier ∅
(w, p) for w /∈ V (p) Verifier ∅
(w, p) for w ∈ V (p) Verifier ∅
(w, p) for w /∈ V (p) Falsifier ∅

(w,ϕ ∧ ψ) Falsifier {(w,ϕ), (w,ψ)}
(w,ϕ ∨ ψ) Verifier {(w,ϕ), (w,ψ)}
(w, µxϕ) − {(w,ϕ[µxϕ/x])}
(w, νxϕ) − {(w,ϕ[νxϕ/x])}
(w, 〈a〉ϕ) Verifier {(v, ϕ) | wRav}
(w, [a]ϕ) Falsifier {(v, ϕ) | wRav}

Table 1: The evaluation game E(M,ϕ)

Any match or play of this game consists of a (finite or infinite) sequence
(wn, ϕn)n<κ of positions (with κ ≤ ω). A finite match, i.e., with κ < ω, is won
by a player if it is their opponent who is supposed to move at the last position
(wκ−1, ϕκ−1), while there is no move available.

To determine the winner of an infinite match (wn, ϕn)n<ω we observe that
the induced sequence (ϕn)n<ω of formulas is an infinite trace, that is: for every
i < ω, either ϕi is a fixpoint formula and ϕi+1 is its unfolding, or else ϕi+1 is
a direct (modal or boolean) subformula of ϕi. It is well known that for every
infinite trace τ = (ϕn)n<ω there is a unique formula that occurs infinitely often
on τ and is a subformula of ϕn for cofinitely many n. We will call this formula,
which must be a fixpoint formula, the most significant formula of τ , and we
declare Verifier (Falsifier) to be the winner of an infinite match (wn, ϕn)n<ω
if the most significant formula of the induced trace (ϕn)n<ω is a ν-formula (a
µ-formula, respectively). It is well known that this winning condition can be
formulated as a parity condition and that consequently the game E(M,ϕ) has
positional determinacy.

Theorem 2.5 (Adequacy of evaluation games). For any plain formula ϕ, model
M and world w, we have M,w � ϕ if and only if the position (w,ϕ) is winning
for Verifier in E(M,ϕ).

For a proof of the theorem see, e.g., [5].

3 Proof systems

In this section we first define the finitary, cyclic proof system that is the subject
of this paper and then discuss infinitary, non-wellfounded proofs that are needed
for our completeness argument.
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3.1 Sequents and constraints

The sequents in our proof system contain a constraint that describes the rel-
ative size of ordinal variables and keeps track of the order in which they are
introduced.

Definition 3.1. A constraint is a tuple O = (O,<, /) where

1. O is a finite set of ordinal variable symbols, called the domain,

2. < is an irreflexive, transitive and upwards linear ordering < (so (O,>) is
a finite forest), called the descendant relation,

3. / is a total linear order on O, called the age relation, consistent with the
ancestor relation: κ < λ implies λ / κ for all κ, λ ∈ O.

Given a constraintO = (O,<O, /O), we write OV(O) forO, the set of ordinal
variables appearing in O. When there is no risk of confusion, we identify the
constraint O with the set OV(O), writing κ ∈ O rather than the formally precise
κ ∈ OV(O). The reflexive closure of <O is denoted ≤O.

Definition 3.2. A sequent is an expression O : Γ where O is a constraint and
Γ is a finite set of formulas whose free ordinal variables are elements of O. We
sometimes write a sequent O : Γ as just Γ, denoting O by O(Γ).

Given a constraint O and κ ∈ O, a descendant of κ is any λ ∈ O such that
λ <O κ, in which case κ is called an ancestor of λ (in O). We say λ is a child
of κ, or that κ is the parent of λ, if λ <O κ and there is no ρ ∈ O such that
λ <O ρ and ρ <O κ. Every κ ∈ O has at most one parent, but may have
multiple children. If κ /O λ we say that κ is older than λ (relative to O).

A substitution on ordinal variables is simply a map σ : OV → OV. With
respect to a constraint O we call a substitution σ increasing if λ ≤O σ(λ) for
all λ, and decreasing if σ(λ) ≤O λ for all λ.

For later use we introduce two auxiliary relations on a constraint O. First of
all, we say that λ is to the left of ρ if λ and ρ are incomparable with respect to
≤O and λ′ /O ρ

′, where λ′ is the <-greatest ancestor of λ that is not an ancestor
of ρ and ρ′ is the <-greatest ancestor of ρ that is not an ancestor of λ. We
then define λ ≺O ρ if λ <O ρ or λ is to the left of ρ, and we sometimes denote
λ ≺O ρ as λ ≺O ρ. As we will see later, ≺O is in fact a strict linear order.

Here is an example to illustrate the different orders on ordinal variables and
how they are related. Consider a constraint O containing seven ordinal variables
κ0, . . . , κ6, where κ0 /O · · · /O κ6 and <O is the transitive closure of:

{(κ3, κ1), (κ4, κ1), (κ5, κ2), (κ6, κ2), (κ1, κ0), (κ2, κ0)}.

Represented as a tree the <O-relation is shown in Figure 1. The figure is drawn
so that, with the age relation as specified, the “left-of” relation between <O-
incomparable variables can be read off directly from the diagram. So κ3 is to
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κ3

<O
��

κ4

<O
��

κ5

<O
��

κ6

<O
��

κ1

<O ##

κ2

<O{{
κ0

Figure 1: A sample constraint.

the left of κ2, κ4, κ5, κ6, while κ1 is to the left of κ2, κ5, κ6, etc. The ≺O relation
is thus the strict linear order given by:

κ3 ≺O κ4 ≺O κ1 ≺O κ5 ≺O κ6 ≺O κ2 ≺O κ0

To simplify notation we introduce a special symbol ? and write o(x) = ? for
an annotation o if x /∈ dom(o). Given an ordinal constraint O, we extend the
order <O to O ∪ {?} by setting κ <O ? for every ordinal variable κ in O. Note
that ≺O, with its definition extended to incorporate ?, is still a linear order over
O ∪ {?} and κ ≺O ? for every ordinal variable κ in O.

The semantics of sequents is given as follows.

Definition 3.3. Let M = (W,R, V ) be a model, A sequent O : Γ holds in M
if for all ordinal assignments o such that o(κ) < o(λ) whenever κ <O λ we have
that

⋃
{[[ϕ]]oM | ϕ ∈ Γ} = W . We say that an ordinal assignment o refutes O : Γ

in M if o(κ) < o(λ) whenever κ <O λ, but
⋃
{[[ϕ]]oM | ϕ ∈ Γ} 6= W .

3.2 Rules and derivations

The sequent calculus we introduce makes use of three operations on constraints:
The operation denoted O + λ extends O by a fresh variable λ as the youngest
element and makes no change to the descendant relation. As a variation, in
O +κ λ the variable λ is also added as a child of κ. That is, for O = (O,<, /),
λ ∈ O and κ ∈ O:

O + λ = (O ∪ {λ}, <, / ∪ {(ρ, λ) | ρ ∈ O})
O +κ λ = (O ∪ {λ}, < ∪ {(λ, κ′) | κ ≤ κ′}, / ∪ {(ρ, λ) | ρ ∈ O})

In both the above constructions it is a requirement that λ does not occur already
in O.

The third construction is the restriction of a constraint to a set of ordinal
variables. Given O as above and V ⊆ O, we define O \ V to be the constraint

O \ V = (O′, < ∩ (O′ ×O′), / ∩ (O′ ×O′)) where O′ = O \ V

Using these operations we can define the inference rules of our sequent cal-
culus. These are presented in Table 2, where we use the expression O(λ < κ) to
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>
O : p, p

O : Γ, ϕ O : Γ, ψ
∧

O : Γ, ϕ ∧ ψ

O + κ : Γ, νxκψ
κ : x

O : Γ, νxψ

O : Γ, ϕ, ψ
∨

O : Γ, ϕ ∨ ψ

O : Γ, ϕ[ηxϕ/x]
η ∈ {µ, ν}

O : Γ, ηxϕ

O : [ă]
∨

Γ, ϕ,Ψ
mod

O : Γ, [a]ϕ, 〈a〉Ψ

O +κ λ : Γ, ϕ[νxλϕ/x]
ν(κ)

O : Γ, νxκϕ

O(λ < κ) : Γ, ϕ[µxλϕ/x]
µ(κ)

O(λ < κ) : Γ, µxκϕ

O +κ λ : Γ, ϕ[λ/ρ]
∀

O : Γ,∀ρ < κ : ϕ

O(λ < κ) : Γ, ϕ[λ/ρ]
∃

O(λ < κ) : Γ,∃ρ < κ : ϕ

O \ V : Γ
lw

O : Γ

O : Γ
rw

O : Γ, ϕ

O : Γ, ϕ O : Γ, ϕ
cut

O : Γ

Table 2: Rules of sequent calculus

refer to a constraint O such that λ <O κ. A tree constructed by applications of
these rules, and labelled with sequents and names of the rules applied, will be
called a derivation. We shall reserve the term proof for derivations satisfying
one of several syntactic criteria guaranteeing validity, defined in the following
sections. Given a derivation Π and a vertex m in Π, the sequent labelling m is
denoted Π(m).

Note that these rules feature no side conditions, besides the obvious con-
straint that all sequents involved in a rule instance must be bona fide sequents.
This means that the ∀-rule satisfies the usual eigenvariable condition: the vari-
able λ appearing in the premise cannot occur in the conclusion. If it had oc-
curred in some formula, then by definition of a sequent it should also appear
in the constraint, meaning that the constraint O+κ λ appearing in the premise
would not be well-defined. A similar eigenvariable constraint holds for the rule
ν(κ), and for the same reason. In the same vein, observe that in an application
of lw, for the premise to be a well-formed sequent, no ordinal variable in the set
V may occur free in Γ.

The reader may have noticed that the cut rule also has a hidden restriction
due to the definition of a sequent: the cut formula will never contain an ordinal
variable that does not occur in the conclusion. This is not as restrictive as it
may at first seem. Cuts can still be used to introduce new ordinal variables in
proof search, since the cut formulas may contain quantifiers which can then be
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instantiated, such as in the following:

...

O +κ λ : Γ, ϕ[λ/ρ]

O : Γ,∀ρ < κ : ϕ

...

O : Γ,∃ρ < κ : ϕ
cut

O : Γ

The calculus does not feature a rule for introducing an unapproximated least
fixed point from an approximant, for instance,

O : Γ, µxκ.ϕ
µ

O : Γ, µx.ϕ

Although sound, the above rule is not necessary for a complete sequent calculus.
Without such a rule, derivations have the property that explicitly approximated
least fixed points only arise from premises of the cut rule.

Proposition 3.4. Let R be an instance of any of the derivation rules except
cut, with conclusion O : Γ. If every formula in Γ is well-annotated, then every
formula appearing in a premise of R is well-annotated.

Proof. By inspection of the proof rules.

Further on we shall frequently need to employ the following minimisation
rule.

O : Γ,∃λ < κ : ϕ[µxλψ/z] O +κ κ0 : Γ, ϕ[νxκ0ψ/z]
min

O : Γ

This rule is easily derived via a cut:

O : Γ,∃λ < κ : ϕ[µxλ.ψ/z]

O +κ κ0 : Γ, ϕ[νxκ0ψ/z]
∀

O : Γ,∀λ < κ : ϕ[νxλψ/z]
cut

O : Γ

Intuitively, we can view the minimisation rule as expressing a case distinction for
how we may construct a counter-model to Γ, in particular when Γ contains the
formula ϕ[νxκψ/z]: either we decide that κ is the smallest ordinal approximant
of the fixpoint νxψ for which the formula fails to hold, or we introduce a name
κ0 for smaller ordinal approximant such that ϕ[νxκ0ψ/z] fails to hold. In the
sequel we shall assume that the minimisation rule is a rule of our proof systems.

3.3 Cyclic proofs

We now present our main notion of a valid proof, which is based on ‘cyclic’
derivations, which can be seen as finite representations of infinite but regular,
non-wellfounded proof trees. It is straightforward to show that having no re-
strictions on allowed cycles trivialises the calculus, allowing any sequent to be
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derived by a cyclic proof. The notion of cyclic proof therefore comes equipped
with a condition on cycles, called the correctness criterion, ensuring only valid
sequents are derivable. First, we define more precisely what is meant by a
“cycle”.

Definition 3.5. A derivation with back-edges is a pair (Π, c) where Π is a
derivation and c is a partial function from the leaves of Π to inner nodes of Π,
called the companion function, such that that for every leaf l ∈ domc,

• l and c(l) are labelled by the same sequent, i.e., Π(l) = Π(c(l)), and

• l is an ancestor of c(l).

We call c(l) the companion of l.

Note that our requirement that a leaf l is labelled by the same sequent as its
companion c(l) entails more than just the same formulas occurring in the leaf
and companion. It also implies that the constraints are identical, which means
in particular that the relative ages of ordinal variables in leaf and companion
are the same. This plays a dual role. On one hand, it facilitates proof search,
and will be used extensively in our completeness argument. For this purpose
however, it is not clear that the age ordering needs to be incorporated directly
into the definition of a valid proof. We shall see that, in fact, the age ordering
also plays a crucial role in ensuring that the proof system is sound. It is for this
reason that it is explicitly part of the proof system, rather than just an auxiliary
technical device used to prove completeness.

It remains to formulate a criterion for distinguishing valid cyclic proofs from
invalid derivations. For our purposes, the correctness criterion can be formulated
as a particular instance of the structural rule lw occurring on the path between
companion and leaf. We thus begin with isolating these special instances of
weakening, henceforth called resets.

Definition 3.6. The reset rule is any instance of constraint weakening of the
form

O \K : Γ
reset(κ)

O : Γ

such that

1. κ ∈ O and κ does not occur in Γ;

2. K is the set of children of κ in O.

Note, since derivations are assumed to be well formed, the children of κ, namely
the variables in K above, do not occur in Γ.

Definition 3.7. Let (Π, c) be a derivation with back-edges and l ∈ domc be
labelled by a sequent O : Γ. An ordinal variable κ ∈ O is a reset variable for l
if

1. κ occurs in the constraint at every vertex on the path from c(l) to l;
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>
∅ : p, p

lw, rw
κκ0 : p, p, 〈a〉Y

>
∅ : p, p

lw, rw
κκ0κ1 : p, p, 〈a〉Y

>
∅ : p, p

lw, rw
κκ1κ0 : p, p, 〈a〉Y

∗
κκ0 : Y

κ0 , Y
reset(κ)

κκ1κ0 : Y
κ0 , Y

mod, rw
κκ1κ0 : [a]Y

κ0 , p, 〈a〉Y
∧,∨

κκ1κ0 : p ∧ [a]Y
κ0 , p ∨ 〈a〉Y

ν(κ1), µ
κκ1 : Y

κ1 , Y
reset(κ)

κκ0κ1 : Y
κ1 , Y

mod, rw
κκ0κ1 : [a]Y

κ1 , p, 〈a〉Y
∧,∨

κκ0κ1 : p ∧ [a]Y
κ1 , p ∨ 〈a〉Y

ν(κ0), µ
κκ0 : Y

κ0 , Y (∗)
mod, rw

κκ0 : [a]Y
κ0 , p, 〈a〉Y

∧,∨
κκ0 : p ∧ [a]Y

κ0 , p ∨ 〈a〉Y
ν(κ), µ

κ : Y
κ
, Y

y : κ
∅ : Y , Y

Figure 2: Cyclic proof of the sequent µy. p ∨ 〈a〉y, µy. p ∨ 〈a〉y. The relation
of non-axiomatic leaves to companions is denoted by ∗. The proof employs
the following abbreviations: Y and Y κ denote the formulas µy. p ∨ 〈a〉y and
µyκ. p ∨ 〈a〉y respectively; constraints are abbreviated to κ for ({κ}, ∅, ∅), κκ′
for κ+κ κ

′ and κκ′κ′′ for (κκ′) +κ′ κ
′′.

2. An instance of reset(κ) occurs on this path.

A leaf of Π is successful if some variable is a reset variable for the leaf.

We can now stipulate the correctness criterion for cyclic proofs.

Definition 3.8. A cyclic proof is a finite derivation with back-edges (Π, c)
such that domc contains all non-axiomatic leaves of Π and every leaf in domc
is successful. We write ` O : Γ to express the existence of a cyclic proof with
root labelled by O : Γ.

Given a plain formula ρ, a cyclic proof of ρ is a cyclic proof with end sequent
∅ : ρ, where ∅ denotes the empty constraint, i.e. the unique constraint in which
the underlying set of ordinal variables is empty. We write ` ρ to say there exists
a cyclic proof of ρ.

Examples of cyclic proofs are given in Figures 2 and 3. The former presents
a simple case of excluded middle for the formula µy. p∨〈a〉y. The proof involves
a single non-axiomatic leaf, denoted by ∗. Along the path from this leaf to its
companion (also marked ∗), the variable κ appears in every constraint and is
reset. Hence, this path is successful. A cyclic proof of the formula p→ νx. [ă]x∧
µy. p ∨ 〈a〉y is given in Figure 3. This formula expresses the property that for
every ă-path there is a ‘returning’ a-path. The proof in Figure 3 also displays
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>
∅ : p, p

rw, µ,∨
∅ : p, Y

...

κκ0 : [a]Y , Y

...

∅ : Y , Y
mod

∅ : [a]Y , 〈a〉Y
rw,∨, µ

∅ : [a]Y , Y
lw

κκ1 : [a]Y , Y

†
κκ0 : Y , [ă]Xκ0

reset(κ)
κκ1κ0 : Y , [a]Xκ0

...

κκ1κ0 : Y , Y
∧, ν(κ1)

κκ1 : Y ,Xκ1

cut
κκ1 : [a]Y ,Xκ1

mod
κκ1 : Y , [ă]Xκ1

reset(κ)
κκ0κ1 : Y , [ă]Xκ1

...

κκ0κ1 : Y , Y
∧, ν(κ1)

κκ0 : Y ,Xκ0

cut
κκ0 : [a]Y ,Xκ0

mod
† κκ0 : Y , [ă]Xκ0

...

κκ0 : Y , Y
∧

κκ0 : Y , [ă]Xκ0 ∧ Y
ν(κ)

κ : Y ,Xκ

x : κ
∅ : Y ,X

cut
∅ : p,X

∨
∅ : p ∨X

Figure 3: Cyclic proof of the formula p∨νx. [ă]x∧µy. p∨〈a〉y. Subproofs of the
sequent ∅ : Y , Y are as in Figure 2 and omitted. The relation of non-axiomatic
leaves to companions is denoted by †. The proof employs the same abbreviations
as Figure 2 with, in addition, X and Xκ denoting formulas νx. [ă]x ∧ Y and
νxκ. [ă]x ∧ Y respectively.

a single non-axiomatic leaf whose companion is the inner sequent marked as
†, though each of the five omitted subproofs of Y , Y also involves an internal
leaf-companion pair as per Figure 2. As the variable κ occurs in the constraint
of every sequent along the connecting path, this leaf is successful. Note that in
both examples, the repeating cycles require two applications of the reset rule.
The reason for this is that we require leaves and companions to be identical
as sequents. This is just a technical convenience; one could instead formulate
a weaker condition on leaf-companion pairs, requiring identity only up to a
renaming of ordinal variables. Some care is needed to ensure soundness however;
the precise formulation of such a condition was worked out in [1].

For certain proofs in the following, it will be convenient to consider a con-
ditional notion of cyclic proof, i.e., cyclic proofs from assumptions. For this
notion of proof it is important to restrict the application of structural rules on
paths from the conclusion to assumptions.

Definition 3.9. Let S ∪ {O : Γ} be a set of sequents. A (cyclic) proof of O : Γ
from assumptions S is a finite derivation with back-edges (Π, c) such that every
leaf l ∈ domc is successful and every leaf l ∈ domc is either an axiom, or else (i)

14



it is labelled by a sequent in S, and (ii) there is no application of lw (including
reset rules) on the path from the root of Π to l.

We are now ready to state our main result:

Theorem 3.10 (Soundness and Completeness). Let ρ be any plain formula of
the two-way µ-calculus. Then ρ is valid if, and only if, it has a cyclic proof.

The remainder of the paper is devoted to proving Theorem 3.10. Section 4
culminates in the proof of soundness. Completeness is the subject of Sections 5
and 6.

The proof of completeness of the cyclic proof system relies on completeness
of non-wellfounded proofs, where the correctness condition on infinite branches
is stipulated in terms of infinite descending chains of ordinal variables in the
controls of sequents along infinite paths. In their most general formulation,
completeness for such proofs is easy to prove, but not very helpful towards prov-
ing the main theorem since non-wellfounded proofs can be highly non-regular
without any bound on the size of sequents in a proof tree.

Therefore, we isolate a sub-class of non-wellfounded proofs, called slim proofs,
which, although not finitely presentable in general, are in an important sense
closer to the finitary notion of provability: in slim proofs, the number of for-
mulas that can appear in sequents is bounded. Constraints, however, can grow
without bound. Finitising the constraints is the second step towards obtaining
a cyclic proof for a valid sequent. Completeness with respect to slim proofs
is established via a two-player game that we call the mosaic game, in which
one player (Prover) tries to construct a proof of the root formula, and the op-
posing player (Refuter) attempts to build a counter-model by selecting certain
‘saturated’ sequents called tiles.

With completeness of slim proofs in place, the next step is to insert uses of the
reset rule in order to bound the size of constraints. This transformation alters
the correctness condition on infinite paths from an infinite descent condition
to an infinitary version of the reset condition from cyclic proofs: every infinite
branch features some ordinal variable that is reset infinitely often. The final
step of the completeness argument is to show that any non-wellfounded slim
derivation satisfying the infinite reset condition can be pruned to a finite, cyclic
proof.

3.4 Non-wellfounded proofs

In the proof of completeness for cyclic derivations we will make extensive use of
an intermediate notion of proof based on infinite, or non-wellfounded, deriva-
tions. In analogy with the case of cyclic proofs, an infinite derivation will be
considered a proof provided every infinite path in the derivation fulfils a syn-
tactic criterion. Later we will consider infinite proofs where correctness is based
on an (infinitary) notion of reset variable. For now we introduce the concept
of an infinite descent proof where the requirement on infinite paths is that the
sequence of constraints in the path induces an infinite descending sequence of
ordinal variables.
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Definition 3.11. Let P = (Oi)i<ω be an infinite sequence of constraints.
We say that P has an infinite <-descending chain of ordinals if there are an

infinite sequence (κi)i<ω of ordinal variables and an increasing function σ : ω →
ω such that such that for every i it holds that κi+1 <Oσ(i) κi and κi+1 ∈ OV(Ol)
for all l ∈ {σ(i), σ(i)+1, . . . , σ(i+1)}. An infinite ≺-descending chain of ordinals
is defined analogously.

An infinite derivation is said to be an infinite descent proof if every leaf is an
axiom, and every infinite path is such that the sequence of constraints through
this path has an infinite <-descending chain of ordinal variables.

Definition 3.12. A finite proof tree is said to be a wellfounded proof if every
leaf is labelled by a sequent of the form O : ϕ,ϕ.

4 Soundness

In this section we show how to prove soundness for the cyclic and non-wellfounded
variants of the proof system that is defined in the previous section. We start
with the soundness proof for the cyclic proof system.

Definition 4.1. A strongly connected component, abbreviated SCC, in a cyclic
proof tree is a set X of nodes which is connected, seen as a subgraph of the proof
tree, where the (directed) edge relation is given as the union of the parent-child
and the back-edge relation.

It is clear that every strongly connected component X of a cyclic proof tree
has a lowest element, i.e. a unique element with the shortest path to the root
of the proof tree, which must be the companion node of some leaf. We call this
the root of X. (Note that we imagine trees as growing upwards, with the root
at the bottom, in line with the way that we depict proof trees.)

The following characterization of cyclic proofs will be useful:

Proposition 4.2. Let Π be a cyclic proof tree. Then Π is a valid cyclic proof
if, and only if, for every SCC X of Π there is some ordinal variable κX that
appears in the constraint of each sequent in X, and is reset in at least one vertex
of X.

Proof. For right to left, it suffices to note that for every leaf l, the path from
the companion of l to l is a strongly connected component of Π.

For left to right, let Π be a valid cyclic proof.

Claim 1. Let X be any SCC of Π. Then there exists an ordinal variable κX
that belongs to the constraint of every vertex in X, and is equal to the variable
κl associated with some leaf l.

Proof of claim. We prove this by induction on the number of non-axiom leaves
in X. The base case consists of the case where X is a single cycle (comprising
all nodes on the path to a leaf l from its companion), and in this case we just
take κX = κl.
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Now, suppose that X has more than one non-axiom leaf. Consider the set
S of vertices in X that are ancestors of all non-axiom leaves in X. It is clear
that any two vertices in this set are comparable with respect to the descendant
relation, so we can pick the maximum element s of the set, i.e. s ∈ S and s is a
descendant of every member of S. We call s the splitting point of X. Because all
proof rules have at most two premises it follows that s has exactly two children,
a left child and a right child. Every non-axiom leaf is a descendant of either the
left child of s or the right child of s. In the first case we speak of a left leaf and
in the second case a right leaf. Note that some leaf of X must have the root of X
as companion, and this leaf must be either a left or right leaf. We may assume
without loss of generality that it is a left leaf, the other case is symmetrical.
Note that some right leaf must have a companion that is an ancestor of s, since
X is strongly connected. Let c denote the lowest ancestor of s (closest to the
root of X) that is the companion of some right leaf. Let X0 be the set of vertices
that lie on a path from the root of X to some left leaf, and let X1 be the set of
vertices that lie on a path from c to some right leaf. Then X0 ∪X1 = X, and
both X0 and X1 are SCC’s with fewer non-axiom leaves than X (note that c is
the root of X1). So by the induction hypothesis, there are variables λ0, λ1 such
that λ0 appears in the constraint of every vertex in X0 and λ1 appears in the
constraint of every vertex in X1. In particular, since c ∈ X0 ∩X1, both λ0 and
λ1 appear in the constraint of c. We now consider two cases.

Case 1: λ0 is older than λ1 in the constraint of c. By assumption λ0

appears in the constraint of every vertex in X0. We define the depth of a right
leaf l as the number of leaves passed on the shortest path from the leaf to c.
More precisely, if the companion of l is c then l has depth 0. Otherwise the
depth of l is the smallest number k+ 1 such that the companion of l belongs to
the path from the companion of l′ to l′, where l′ is some right leaf of depth k.
We prove by induction on the depth of a leaf l that λ0 belongs to the constraint
of every vertex on the path from the companion of l to l, and furthermore is
older than λ1 in every such constraint.

For depth = 0, suppose l has c as companion. If there is some u on the
path from c to l in which λ0 does not appear in the constraint, then it has to
be re-introduced later since the label of l is equal to that of c. But since λ1

is on the constraint of every vertex on the path from c to l, λ0 can only be
re-introduced as a younger variable than λ1, and remain so. So the label of l
cannot equal that of c after all, contradiction.

For depth = k + 1, suppose l has companion v that is on the path from the
companion of l′ to l′, where l′ has depth k. Then again, λ0 is introduced as
a younger variable than λ1 in the companion v, and we can repeat the same
argument.

Case 2: λ1 is older than λ0 in c. Then in fact, λ1 must appear in the
constraint of the root of X, since λ0 belongs to the constraint of every vertex
on the path from the root of X to c, and so if λ1 were introduced on this path
it would have to be younger than λ0. With this observation in place we can
repeat the whole argument from the previous case, but with the root of X in
place of c.
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To finish the proof, take any connected component X of Π, and let κX be
the variable provided by the Claim. Then κX = κl for some leaf l. By definition
of a valid cyclic proof, κl is reset at least once on the path from the companion
of l to l. But this path is contained in X, so κX = κl is reset in some vertex in
X.

Proposition 4.3. If ρ has a cyclic proof then ρ is valid.

Proof. Let Π be a cyclic proof of ρ.
Assume for a contradiction that there is some model M , a world w in M

and an ordinal assignment o such that M,w 2o ρ. Our strategy is to find an
infinite walk through the cyclic proof Π, inducing a series of ordinal assignments,
from which we can read off an infinitely descending sequence of ordinals. This
contradiction then gives the proposition. We construct the walk by induction
as follows. We define a vertex vn of Π, an element wn of W and an ordinal
assignment on by induction on n. We shall maintain the invariant that for each
n, on refutes the label of vn (henceforth denoted Γn) at wn. Note that this means
that we never reach a leaf labelled by an axiom. For the base case, we define v0

to be the root of the proof tree labelled ` ρ, set w0 = w, and set o0 = o. Note
that o can be taken to be the empty assignment if ρ does not contain any ordinal
variables. The assignment o0 refutes the sequent ` ρ at w0 by the assumption
that M,w 2o ρ. The inductive step is by case distinction depending on the
rule applied at the vertex vn. We distinguish between applications of the left
weakening rule that correspond to the reset of a variable from other applications
of left weakening. These need to be treated separately as they allow us to build
the decreasing chain of ordinals.

Case vn is the conclusion of an application of κ : x. Here, κ is a
fresh variable and the principal formula of the rule is of the form νxϕ, which is
replaced by νxκϕ. We define on+1 to be the extension of on obtained by mapping
κ to the closure ordinal of the map ϕonM , and set vn+1 to be the premise of vn
and wn+1 = wn.

Case vn is the conclusion of an application of the modal rule. Let
the principal formula be [a]ϕ. Since on refutes the label of Γn at wn, it is clear
that there is some a-successor w′ at which on refutes the premise. So we set
wn+1 = w′, vn+1 to be the premise of the rule application and on+1 = on.

Case vn is the conclusion of an application of the cut rule. Since on
refutes Γn at wn, it has to refute one of the premises at wn also. We pick vn+1

to be this premise, and set wn+1 = wn, on+1 = on.
Case vn is the conclusion of an application of the ∧-rule. Since on

refutes Γn at wn, it has to refute one of the premises at wn also. We pick vn+1

to be this premise, and set wn+1 = wn, on+1 = on.
Case vn is the conclusion of an application of the ∨-rule, η-rule or

∃-rule. We set vn+1 to be the premise, and set wn+1 = wn and on+1 = on. The
invariant is easily seen to be maintained.

Case vn is the conclusion of an application of µ(κ). We define wn+1 =
wn and on+1 = on. By assumption we have that wn /∈ [[µxκϕ]]on = fon(κ)(∅),
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where f is the monotone map with f(Z) = [[ϕ]]onM [x7→Z]. If we now consider any λ

such that on(λ) < on(κ) we have that fon(λ)+1(∅) ⊆ fon(κ)(∅), because on(λ) +
1 ≤ on(κ). Thus it follows that wn+1 = wn /∈ fon(λ)+1(∅) = f(fon(λ)(∅)) =
[[ϕ[µxλ.ϕ/x]]]on . Thus the invariant is maintained.

Case vn is the conclusion of an application of the ∀-rule. Let λ < κ
be the fresh variable introduced. Since on refutes Γn at wn there must be some
ξ < on(κ) such that on[λ 7→ ξ] refutes the premise at wn. So we set vn+1 to be
the premise of vn, wn+1 = wn and on+1 = on[λ 7→ ξ].

Case vn is the conclusion of an application of the ν(κ)-rule. Let
λ < κ be the fresh variable introduced. Since on refutes Γn at wn we have that
wn /∈ [[νxκ.ϕ]]on . If we write f for the monotone map with f(Z) = [[ϕ]]onM [x 7→Z]

this means that wn /∈ fon(κ)(W ). By the definition of fon(κ) we have that

fon(κ)(W ) =
⋂
ζ<κ

f(fon(ζ)(W )).

Thus there exists some ordinal ζ < on(κ) such that wn /∈ f(fζ(W )). We
set wn+1 = wn and on+1 = on[λ 7→ ζ]. This refutes the premise because
wn+1 = wn /∈ f(fζ(W )) = [[ϕ[νxλ.ϕ/x]]]on+1 .

Case vn is a leaf with companion v′. We set on+1 = on, and set wn+1 =
wn, vn+1 = v′. The invariant is obviously maintained.

Case vn is the conclusion of an application of left weakening in
which the variable κ is reset. This means that neither κ nor any of its
children appear on the right-hand side of Γn, and all children of κ are removed.
List the children of κ as λ1, ..., λm. We define the new assignment on+1 by
setting:

on+1(κ) = max(on(λ1), ..., on(λm)),

and on+1(λ) = on(λ) for λ 6= κ. We set wn+1 = wn and we set vn+1 to be
the premise of the rule application. We need to check that the new assignment
on+1 refutes Γn+1 at wn+1. Since none of the variables κ, λ1, ..., λm appear on
the right-hand side of Γn or Γn+1, it suffices to show that the new assignment
is consistent with the constraint On+1 of Γn+1.

First, note that on+1(κ) < on(κ), since we have on(λi) < on(κ) for each
i ∈ {1, ...,m} and since on+1(κ) was defined as max(on(λ1), ..., on(λm)) (this
observation will be important later!). Hence if κ′ is the parent of κ in On+1

then:
on+1(κ) < on(κ) < on(κ′) = on+1(κ′)

as required. Now, suppose ξ is a child of κ in On+1. Then there must be some
λi, i ∈ {1, ...,m}, such that ξ was a descendant of λi in the constraint of Γn.
Hence we get:

on+1(ξ) = on(ξ)

< on(λi)

≤ max(on(λ1), ..., on(λm))

= on+1(κ),
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so on+1(ξ) < on+1(κ) as required.
Other cases. The other cases of left or right weakening are trivial.

With this construction in place, consider the infinite walk v0v1v2 . . . through
Π that we obtain in the limit. Let X be the set of all vertices that are visited
infinitely many times on Π. This is obviously a strongly connected component,
so since Π was a valid cyclic proof, by Proposition 4.2 there is some κ that
appears in the constraint of every vertex in X, is reset on the path from the
root of X to one of its leaves. Hence, it is clear that the value assigned to κ by
the ordinal assignments oi never increases, and decreases every time the walk
passes through the vertex at which κ is reset. So the successive values that these
ordinal assignments give to κ produce an infinite descending series of ordinals,
which is impossible. This contradiction concludes the proof.

We now briefly sketch to adapt the soundness proof for the cyclic system to
non-wellfounded proofs.

Proposition 4.4. If ρ has a non-wellfounded proof then ρ is valid.

Proof sketch. The argument is similar to the proof of Proposition 4.3: Let Π be
a non-wellfounded proof of ρ. We assume for contradiction that there is some
model M , world w in M and an ordinal assignment o such that M,w 6|=o ρ. We
find an infinite path v0, v1 through Π and ordinal assignments o0, o1, . . . such
that oi refutes Oi : Γi, where Oi : Γi is the sequent at vi. The construction
of this infinite path is similar as in the proof of Proposition 4.3. We can omit
the case for leafs with companions and treat all instances of left weakening as
left weakenings that do not correspond to a reset. In the end a contradiction
arises from an infinite descending chain of ordinals that can be read of from the
sequence o1, o2, . . . using the condition from Definition 3.11.

5 Completeness for infinite proofs

In this section we will prove completeness for infinite non-wellfounded proofs,
as the first step towards our main result, i.e. completeness for cyclic proofs.
More precisely, we introduce a special class of non-wellfounded proofs that we
call slim proofs and prove that any valid formula has a slim proof. Slim proofs
are genuinely infinite (non-regular), and can contain infinitely many different
sequents. However, they do have the property that there is a fixed bound on
the number of formulas occurring in any sequent, although the constraints can
grow without bound. This property will be important later when we transform
slim proofs into finite, cyclic proofs.

5.1 Slim proofs

We start by defining the notion of a slim proof.
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Definition 5.1. Let O : Γ be any sequent and let o0 and o1 be any annotations
that have their range is in OV(O). We write o0 ≺xO o1 if o0(x) ≺O o1(x) while,
for all y higher ranking than x, we have o0(y) = o1(y). We write o0 ≺O o1 if
there is some ordinal variable x such that o0 ≺xO o1.

Definition 5.2. Let O : Γ be any sequent, and let ϕ,ψ ∈ Γ be positively
annotated formulas. We write ϕ ≺O ψ, or just ϕ ≺ ψ when O is clear from
context, if u(ϕ) = u(ψ) and, oϕ ≺O oϕ.

We write �O as shorthand for “≺O or =”. A positively annotated formula
ϕ is minimal with respect to a constraint O if there is no formula ψ such that
ψ ≺O ϕ. A sequent O : Γ is said to be minimal if every positively annotated
formula occurring in Γ is minimal with respect to O.

Definition 5.3. Let Γ be a set of plain formulas. The set OC(Γ) consists of all
positively or negatively annotated formulas ϕ such that u(ϕ) ∈ Clos(Γ). The
set QC(Γ) consists of OC(Γ), together with all formulas of the form Qκ < λ : ϕ,
where Q ∈ {∀,∃} and ϕ ∈ OC(Γ). The extended closure EC(Γ) of Γ consists
of QC(Γ), together with all formulas of the form [a]

∨
∆ or

∨
∆, where ∆ is a

subset of QC(Γ).
A proof tree Π is said to be slim if:

1. All formulas in Π belong to the extended closure of the root formula.

2. For any formula ϕ that occurs in some sequent Γ in Π, all free ordinal
variables of ϕ are active in Γ. Equivalently, for any sequent Γ in Π, any
ordinal variable that occurs freely in some formula in Γ also occurs freely
in some positively annotated formula in Γ.

3. Any sequent in Π which is not minimal with respect to its constraint is
the conclusion of an application of right weakening.

4. There is no application of left weakening in Π.

5. In any application of the cut rule, µ(κ) or ∃, all ordinal variables occurring
free in the cut formula or minor formula of the rule application are active
variables in the conclusion.

Observe that because infinite branches in slim proofs do not contain appli-
cations of lw the set of ordinal variables in the constraint only grows as we move
along the branch. We can thus define the following notion of the limit constraint
of a branch:

Definition 5.4. Fix an infinite branch β = v0, v1, . . . of a slim proof and let
Oi = (Oi, <i, /i) be the constraint at vi for all i ∈ ω. Define the infinite set
Oβ =

⋃
i∈ω Oi, and the orders <β , /β and ≺β over Oi such that �β =

⋃
i�i

for � ∈ {<,≤, /}.

It is clear that in slim proofs an infinite <-descending chain of ordinals in
a branch β, according to Definition 3.11 is the same as an infinite descending
chain in the order <β , according to the usual definition of an infinite descending
chain in some order. The same holds for infinite ≺-descending chains.
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Proposition 5.5. If β = v0, v1, . . . is an infinite branch in a slim proof, then

1. <β is irreflexive, transitive and upwards linear.

2. /β is a linear order.

3. ≺β is a linear order.

4. <β is conversely well-founded and /β is well-founded.

5. λ ≺β κ iff λ <β κ or λ is to the left of κ with respect to the orders <β
and /β .

Proof. First observe that left weakening is never applied on β because by as-
sumption it is a branch in a slim proof. It follows then from an inspection of
the proof rules that for all i ∈ ω it holds that either Oi+1 = Oi, Oi+1 = Oi +λ,
or Oi+1 = Oi +κ λ, for some ordinal variable λ. Thus, in every step there is
at most one variable λ added; this λ is made maximal in /i+1, and it is either
a new leaf in <i+1 or <i+1-incomparable to all existing variables. Using this
observation it is relatively straightforward to verify items 1–4.

For item 5 first recall that λ is to the left of κ with respect to the orders
<β and /β if λ and κ are <β-incomparable and λ′ /β κ

′ holds, where λ′ is the
<β-greatest <β-ancestor of λ that is not an <β-ancestor of κ and κ′ is the
<β-greatest <β-ancestor of κ that is not an <β-ancestor of λ. Note that the
<β-greatest node with some property is well-defined because <β is conversely
well-founded.

The details of the proof of item 5 are left to the reader. The crucial step in
the argument is to show that the following are equivalent:

1. λ′ is the <β-greatest <β-ancestor of λ that is not a <β-ancestor of κ;

2. for some i, λ′, λ, κ exist and λ′ is the <i-greatest <i-ancestor of λ that is
not a <i-ancestor of κ.

The proof of this equivalence relies on the observation that when moving from
Oi to Oi+1 only new leafs or new roots are added to the order <i+1. Thus,
variables that are comparable at stage i stay comparable at stage i + 1, and
variables that exist in Oi and are incomparable stay incomparable.

Proposition 5.6. Let β be an infinite branch of a slim proof tree Π. Then
it contains an infinite ≺-descending chain of ordinal variables if, and only if, it
contains an infinite <-descending chain of ordinal variables.

Proof. It is clear that it suffices to prove this result for the orders ≺β and <β
from Definition 5.4. We writeO,≺, < and / forOβ ,≺β , <β , and /β , respectively.
The direction from right to left follows directly from the definitions of <β and
≺β and the relation between <i and ≺i at any finite i ∈ ω.

For the direction from left to right assume that we have an infinite descending
chain κ0 � κ1 � . . . of ordinal variables in O. The aim is to use König’s Lemma
to prove that there is an infinite descending chain in <Oβ .
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Consider the following set of variables from O:

F = {λ ∈ O | λ ≥ κi for some i ∈ ω}.

Because by Proposition 5.5 < is upwards linear and conversely well-founded we
can consider F to be a forest under the order <. The set F is infinite because
it contains the infinitely many distinct κi for i ∈ ω. We first show that there is
an infinite subset T ⊆ F that is a tree under <.

Claim 2. There are only finitely many <-maximal elements in F .

Proof of Claim 2. First, note that because F is upwards closed in< the concepts
of being <-maximal and of being <-maximal in F coincide. Assume then for a
contradiction that there are infinitely many <-maximal elements in F . Because
/ is a linear order and it is well-founded this means that we can build an infinite
chain δ0 / δ1 / . . . of <-maximal elements in F . By definition of F we have for
each i ∈ ω some ki ∈ ω such that κki ≤ δi. It follows by item 5 of Proposition 5.5
that there is an infinite ascending κk0 ≺ κk1 ≺ . . . . But because of the infinite
descending chain κ0 � κ1 � . . . , this contradicts the fact that ≺ is a partial
order.

It follows by the pigeonhole principle that there must be one <-maximal
element r below which there are infinitely many elements from F . We define
the set T ⊆ F to be all those elements from F that are <-smaller than r. The
set T is an infinite tree under the order <. The claim of the proposition then
follows by König’s Lemma if we can show that this tree T is finitely branching.
This is shown in the following claim:

Claim 3. Every variable λ ∈ T has only finitely many <-children in T .

Proof of Claim 3. Assume for a contradiction that some λ ∈ T has infinitely
many <-children in T . Because / is a linear order and it is well-founded this
means that we can build an infinite chain δ0 / δ1 / . . . of <-children of λ with
δi ∈ T for all i. By the definition of T we can find, for every i ∈ ω, some ki ∈ ω
such that κki ≤ δi. It follows by item 5 of Proposition 5.5 that κk0 ≺ κk1 ≺ . . . ,
because as the δi are <-siblings they must be <-greatest ancestors of the κki
without being each others ancestors. But this contradicts the fact that ≺ is a
partial order and the assumption that κ0 � κ1 � . . . .

This finishes the proof of Proposition 5.6.

A basic property of slim proofs that will be useful is the provability of the
following generalized version of excluded middle:

Proposition 5.7. Let ϕ be a positively annotated formula, and let σ be an
increasing substitution. Then there is slim proof for any sequent O : ϕ,ϕ[σ].
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Proof. The proposition is proved by a formula induction, which we illustrate by
considering the case where ϕ = νxκ0ψ.

By the inductive hypothesis there is a slim proof Π for any sequent O′ :
ψ′, ψ′[σ], where ψ′ is the formula ψ[p/x], for some fresh proposition letter p.
Let Π′ be the derivation we obtain from Π by replacing every occurrence of p
with the formula νxκ1ψ, and every occurrence of p with the formula µxκ0ψ[σ].
Now consider the following derivation Π1 (where we write λ for σ(κ0)):

Π′
...

O +κ0
κ1 : ψ(νxκ1ψ), ψ[σ](µxκ0ψ[σ])

ν(κ0)
O : νxκ0ψ,ψ[σ](µxκ0ψ[σ])

µ
O : νxκ0ψ, µxλψ[σ]

Note that Π1 need not be a proof, since there may be leaves in Π1, that
were labeled in Π′ by an axiom O′ : p, p, but in π1 are labeled with the se-
quent O′ : νxκ1ψ, µxκ0ψ[σ]. However, to any such leaf we may apply the
same construction that we just described, with σ[κ0/κ1] taking the role of
σ. Iterating this procedure we arrive at a slim proof in which any newly
created infinite branch carries an infinitely descending sequence of variables
· · · < κ2 < κ1 < κ0.

The following is an immediate corollary of Proposition 5.7

Proposition 5.8 (Excluded middle). Let ϕ be a positively annotated formula.
Then there is slim proof for any sequent O : ϕ,ϕ.

The remainder of this section is devoted to proving completeness for slim
proofs (Theorem 5.28). The proof is carried out in several steps, so a high-level
sketch may be helpful:

The first step is to define a particular kind of sequents, called tiles, that
will be used as building blocks from which we construct a counter-model to a
given formula that is not provable. Tiles are saturated sequents of a bounded
size, where the saturation conditions are intended to mimic the conditions under
which all formulas in the sequent are false; for example if a disjunction is present
in the sequent, both disjuncts should be false, and if a formula ∀λ < κϕ(λ) is
present in the sequent then there should be some witness ξ for which ϕ(ξ) is
false. However, adding such saturation conditions näıvely - e.g. if the sequent
contains ∀λ < κϕ(λ) then it contains ϕ(ξ) for some ξ < κ - would quickly destroy
any hopes of maintaining a bound on the number of formulas appearing in a
sequent. The appropriate saturation conditions have to be formulated carefully;
the precise definition is Definition 5.13.

Completeness is proved in Section 5.4. A determined two-player game called
the mosaic game is defined, in which “Prover” tries to produce a slim proof of a
given formula, and the opposing player “Refuter” tries to construct a counter-
model from tiles. The most difficult part of the completeness proof is to show
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that a winning strategy for Refuter actually provides a counter-model. To get
some intuition about what the difficulty is, and how it is handled, consider a
formula [a]νxκ〈ă〉ϕ(x), and say that Refuter is trying to construct a counter-
model for some tile Γ containing this formula. In the mosaic game, Prover can
“attack” the box [a] and ask Refuter to present some tile Ψ which is to be
a-accessible from Γ, and contains νxκ〈ă〉ϕ(x). In order to falsify νxκ〈ă〉ϕ(x)
at Ψ, Refuter has to saturate by adding some child λ of the variable κ to the
constraint of Ψ, along with the formula 〈ă〉ϕ(νxλ〈ă〉ϕ(x)). So here, the variable
κ has progressed to the “smaller” λ. But if Ψ was to be a-accessible from Γ,
this means that Refuter has to make sure that the formula νxλ〈ă〉ϕ(x) is false
at Γ. In other words, already when the tile Γ was constructed, Refuter has to
anticipate that the variable κ will progress due to later steps in the counter-
model construction.

The solution to handling this sort of back-and-forth behaviour is to make
sure that Γ already contains some formula which is “as good as” the formula
νxλ〈ă〉ϕ(x), in some sense. It is quite tricky to formulate an appropriate sat-
uration condition corresponding to this intuition. The notion of a minimality
assumption introduced in Definition 5.9 will be the key concept used to han-
dle this, with the saturation condition given in Definition 5.13. Definition 5.17
defines a notion of a-successor of a tile, which is intended to capture the coher-
ence conditions we require of the a-accessibility relation in the counter-model
construction used in the completeness proof. The key technical result that is
used to handle the difficulty sketched above is Proposition 5.24, which captures
the sense in which a tile anticipates progressions of ordinal variables that may
occur in its a-successors.

5.2 Pre-tiles and tiles

Our completeness proof for slim proofs will build a counter-model for an un-
provable formula out of building blocks that we call tiles, which are essentially
“small” but saturated sequents. The precise notion of “saturated” that we will
use is quite technical, since a näıve concept of saturation would be incompatible
with maintaining a bound on the number of formulas appearing in a sequent. It
will be convenient to first define the notion of a “pre-tile” to capture the general
structure of the sequents that we will be working with, and then define a tile as
a pre-tile that satisfies appropriate saturation conditions.

Definition 5.9. A ρ-pre-tile is a sequent O : Γ where Γ admits a partition into
three disjoint subsets Γ+, Γ−, Γµ such that:

• Every formula ϕ ∈ Γ+ is positively annotated and u(ϕ) belongs to the
closure of ρ.

• Every formula ϕ ∈ Γ− is the negation of a positively annotated formula
ψ such that u(ψ) belongs to the closure of ρ, and every ordinal variable
that occurs freely in ψ is active in Γ+.
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• Every formula ϕ ∈ Γµ is of the form ∃λ < κ : ψ[λ/κ] where ψ ∈ Γ+ and κ
appears in ψ.

The sets Γ+,Γ−,Γµ are called the positive part, the negative part and the mini-
mality assumptions of Γ respectively. The ρ-pre-tile is said to be small if every
formula in Γ+ is minimal with respect to O.

Observe that, for every plain formula ϕ, adding the empty constraint yields
an example of a pre-tile, viz., ∅ : ϕ. Note that this pre-tile is of a special
shape: the negative part and the set of minimality assumptions are empty. In
general we can think of the partition of pre-tiles into these three parts - positive,
negative and minimality assumptions - as keeping track of the different roles that
formulas play in the completeness proof. The positive part of a pre-tile is the
“main” part in a sense; our goal from the start is to construct a counter-model
to the positive part of a pre-tile of the form ∅ : ϕ. Along the way, assumptions
may be introduced via cuts. In a two-sided sequent notation we can think of
pre-tiles as sequents of the shape:

O : Γ,∆⇒ Θ

where ∆,Θ consist of positively annotated formulas, and Γ consists of formulas
of the form ∀λ < κ ψ where ψ ∈ Θ. The function of the sets Γ,∆ is essentially
to constrain what formulas can belong to the positive part (Θ) without making
the sequent provable. A formula ψ ∈ ∆ belonging to the negative part ensures
that ψ cannot belong to the positive part, or “on the right-hand side” of the
sequent, since that would result in a trivially provable sequent. Similarly, a
minimality assumption ∀λ < κ ψ(λ) ∈ Γ ensures that Θ cannot contain the
formula ψ(ξ) for any ξ <O κ, since that would also make the sequent provable.

Proposition 5.10. For every constraint O = (O,<O, /O) the order ≺O is a
strict linear order over ordinal variables.

Proof. It is obvious from the definition that ≺O is irreflexive.
To show that ≺O is transitive assume that κ ≺O λ and λ ≺O δ. Because

of the disjunctive definition of ≺O one has to distinguish four cases. We only
consider the case where κ is to the left of λ and λ is to the left of δ. Let κ′ be
the <O-maximal <O-ancestor of κ that is not a <O-ancestor of λ, α be the <O-
maximal <O-ancestor of λ that is not a <O-ancestor of κ, β the <O-maximal
<O-ancestor of λ that is not a <O-ancestor of δ, and δ′ the <O-maximal <O-
ancestor of δ that is not a <O-ancestor of λ. From the assumption we have that
κ′/Oα and β/O δ

′. Moreover, we have that κ′ and α either have the same parent
in <O or they are both <-maximal and similarly for β and δ′. Because <O is
upwards-linear we have that either α = β, α <O β or β <O α. We consider all
these cases.

If α = β then it follows that either κ′ and δ′ have the same parent in <O
or that they are both <O-maximal. It follows that κ′ is also the <O-maximal
<O-ancestor of κ that is not a <O-ancestor of δ and similarly δ′ is also the
<O-maximal <O-ancestor of δ that is not a <O-ancestor of κ. Moreover, by
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the transitivity of /O we also get that κ′ /O λ
′. Hence, κ is to the left of λ and

κ ≺O λ follows by the definition of ≺O
If α <O β then β is a <O-ancestor of κ because α was the <O-maximal <O-

ancestor of λ that is not an <O-ancestor of κ. It follows that either the common
parent of β and δ′ is a <O-ancestor of both κ and δ, or that β and δ′ are both
<O-maximal. Because we already know that β and δ′ have the same parent or
are both <O-maximal it follows that β is the <O-maximal <O-ancestor of κ
that is not a <O-ancestor of δ, and δ′ is the <O-maximal <O-ancestor of δ that
is not a <O-ancestor of κ. Hence we get κ ≺O δ because β /O δ

′.
If β <O α then α is a <O-ancestor of δ because β was the <O-maximal <O-

ancestor of λ that is not an <O-ancestor of δ. It follows that either the common
parent of κ′ and α is a <O-ancestor of both κ and δ, or that κ′ and β are both
<O-maximal. Because we already know that κ′ and α have the same parent or
are both <O-maximal it follows that κ′ is the <O-maximal <O-ancestor of κ
that is not a <O-ancestor of δ, and α is the <O-maximal <O-ancestor of δ that
is not a <O-ancestor of κ. Hence we get κ ≺O δ because κ′ /O β.

To show that ≺O is linear consider any κ 6= λ. We need to show that either
κ ≺O λ or λ ≺O κ. First, distinguish cases depending on whether κ and λ are
comparable in the strict partial order <O. If they are comparable then we have
either κ <O λ or λ <O κ. It thus follows immediately from the definition of ≺O
that then κ ≺O λ or λ ≺O κ. In the other case κ and λ are <O-incomparable it
follows also that they are ≤O-incomparable since we assume κ 6= λ. There then
must exists the <O-maximal <O-ancestor κ′ of κ that is not an <O-ancestor of
λ and, similarly, there exists the <O-maximal <O-ancestor λ′ of λ that is not
a <O-ancestor of κ. It is clear that λ′ and κ′ must be distinct. Because /O is a
strict linear order it follows that either κ /O λ or λ /O κ. In the former case we
get that κ ≺O λ and in the latter that λ ≺O κ.

Proposition 5.11. Let O : Γ be any pre-tile and ϕ any propositional formula.
Then ≺O is a strict linear order over the set {ψ ∈ Γ+ | u(ψ) = ϕ}.

Proof. Fix ϕ and restrict ≺O to the set {ψ ∈ Γ+ | u(ψ) = ϕ}.
Observe that if ψ, χ ∈ Γ+ with u(ψ) = u(χ) then the domains of oψ and oχ

must be the same. This is the case because by Definition 5.9 ψ, χ ∈ Γ+ entails
that both ψ and χ are positively annotated, which by Definition 2.3 means that
all greatest fixpoint variables are annotated, and both formulas contain the same
greatest fixpoint variables because u(ψ) = u(χ).

It follows from this observation that the restriction of the order ≺O from
Definition 5.2 to formulas from {ψ ∈ Γ+ | u(ψ) = ϕ} is just the lexicographic
extension of the order ≺O over ordinal variables to finite sequences, where each
position in the sequence corresponds to one greatest fixpoint variable in ϕ. It is
clear that this yields a strict linear order, because as shown in Proposition 5.10
≺O is a strict linear order of ordinal variables.

We can now prove that small ρ-pre-tiles are indeed small in the sense that
there is a bound on the number of formulas that they contain.
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Proposition 5.12. Let ρ be any formula. Then there is a bound n such that,
for any small ρ-pre-tile O ` Γ, there are at most n distinct formulas in Γ (up to
renaming of bound ordinal variables).

Proof. Because the ρ-pre-tile Γ is small, Γ+ contains only positively annotated
formulas that are minimal with respect to the order ≺O. From Proposition 5.11
we know that ≺O is a strict linear order over any set Ψ of annotated formulas
with the same underlying plain formula, i.e. such that u(ϕ) = u(ψ) whenever
ϕ,ψ ∈ Ψ. It follows that Γ+ contains at most one annotated formula ϕ for
every underlying plain formula u(ϕ), equal to u(ϕ)o for some annotation o.
This means that Γ+ is bounded by the size m of the closure of ρ. This also
means that the number of active ordinal variables in Γ has a fixed upper bound,
since every annotated formula θo in Γ+ can at most have one ordinal variable
assigned to each fixpoint variable by the annotation o. Since every formula in
Γ− is the negation of some annotated formula, whose underlying plain formula
is in the closure of ρ, it follows that the number of formulas in Γ− is bounded
by m · k|Var(ρ)|, where k is the fixed upper bound on the number of active
ordinal variables. (Note that k|Var(ρ)| bounds the number of annotations of
fixpoint variables in ρ by active ordinal variables in Γ.) For Γµ, since each of
the formulas in Γµ is of the form ∃λ < κ : ϕ[λ/κ] where ϕ ∈ Γ+, the number of
distinct such formulas up to renaming of bound variables is bounded by m · k.
Since the formula part of Γ is Γ+ ∪ Γ− ∪ Γµ, the result follows.

Note that essentially the same proof with some minor modifications can be
used to show that, for any slim proof Π, there is a bound on the number of
formulas that can occur in any sequent in Π up to renaming of bound ordinal
variables. We sometimes abuse notation by writing just Γ instead of O : Γ. In
such cases we let O(Γ) denote O. From now on, without further mention we will
equate formulas that differ only by a renaming of bound variables, and similarly
we count two pre-tiles as the same if they are equal up to renaming of bound
ordinal variables.

Definition 5.13. Let O : Γ be a (small) ρ-pre-tile. We say that this pre-tile is
propositionally saturated if it satisfies the following condition:

1. If ϕ is positively annotated, u(ϕ) is in the closure of ρ and all ordinal
variables appearing in ϕ are active in Γ+, then either ϕ ∈ Γ− or ϕ′ ∈ Γ+

for some ϕ′ �O ϕ.

If, in addition, O : Γ satisfies the conditions below, we call it a (small) ρ-tile:

2. νxϕ /∈ Γ+ for all formulas of the form νxϕ (outermost ν-fixpoints must
be annotated).

3. If νxκϕ ∈ Γ+ then for some κ0 with κ0 <O κ and for some ϕ′ �O
ϕ(νxκ0ϕ), we have ϕ′ ∈ Γ+.

4. If all variables in ϕ(νxκψ) are active in Γ and the underlying plain formula
is in the closure of ρ, and θ ∈ Γ+ for some θ �O(Γ) ϕ(νxκψ), then either

28



∃λ < κ : ϕ(µxλψ) ∈ Γµ, or for some κ0 with κ0 <O κ and some θ′ �O
ϕ(νxκ0ψ) we have θ′ ∈ Γ+.

The collection of small ρ-tiles is denoted as Tρ.

The last condition in Definition 5.13 expresses a saturation condition cor-
responding to the minimisation rule. We can understand it semantically as
follows: suppose we wish to construct a counter-model for the unprovable se-
quent O : Γ, where ϕ(νxκψ) ∈ Γ (or some �-smaller formula belongs to Γ).
By the minimisation rule, either O : Γ,∃λ < κ : ϕ(µxλψ) is unprovable, or
O +κ κ0 : Γ, ϕ(νxκ0ψ) is unprovable. In either of these two sequents, we have
more information about how the ordinal variable κ must be evaluated in a re-
futing model. In any counter-model for O : Γ,∃λ < κ : ϕ(µxλψ), we know that
κ has to be evaluated as the smallest ordinal that refutes ϕ(νxκψ). Otherwise
it would not be a counter-model, as the formula ∃λ < κ : ϕ(µxλψ) would be
true. In a counter-model for the sequent O +κ κ0 : Γ, ϕ(νxκ0ψ), the opposite
holds: there is some ordinal smaller than the value of κ that refutes the formula
ϕ(νxκψ), and we have introduced a fresh name κ0 for this ordinal.

In the next subsection we will show how an unprovable pre-tile can be “sat-
urated” to an unprovable tile. For technical reasons it will be necessary to be
careful with how this saturation is carried out, so that a given pre-tile stands in
a suitable relationship to the corresponding tiles. This relationship � is spelled
out in the following definition; intuitively, we can read Ψ � Γ as “Ψ is at least
as saturated as Γ”.

Definition 5.14. Let Γ,Ψ be pre-tiles, and let L be a set of ordinal variables.
We write Ψ �L Γ if the following conditions hold:

1. OV(O(Ψ)) = OV(O(Γ)) ] L.

2. For all λ, λ′ ∈ OV(O(Γ)) it holds that λ <O(Ψ) λ
′ iff λ <O(Γ) λ

′, and that
λ /O(Ψ) λ

′ iff λ /O(Γ) λ
′.

3. Act(Ψ) ⊆ Act(Γ) ] L.

4. κ /O(Ψ) λ for all κ ∈ OV(O(Γ)) and λ ∈ L.

5. No variable in L is an <O(Γ)-ancestor of any variable in O(Γ).

6. If λ ∈ L, κ ∈ O(Γ) and λ <O(Ψ) κ, then there is some κ′ ∈ Act(Γ) such
that λ <O(Ψ) κ

′ ≤O(Ψ) κ.

7. For every formula ϕ ∈ Γ+ there is some formula ϕ′ ∈ Ψ+ such that
ϕ′ �O(Ψ) ϕ.

We write Ψ � Γ if there is some L such that Ψ �L Γ.

Proposition 5.15. The relation � over tiles is a pre-order.
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Proof. Reflexivity is trivial (Γ �∅ Γ), so we check transitivity. Let Γ2 �L1

Γ1 �L0 Γ0. We show that Γ2 �L0]L1 Γ0, checking each condition individually.
1. We have:

OV(O(Γ2)) = OV(O(Γ1)) ] L1

= OV(O(Γ0)) ] L0 ] L1

2. Straightforward.
3. We have:

Act(Γ2) ⊆ Act(Γ1) ] L1

⊆ Act(Γ0) ] L0 ] L1

4. No variable in L0 is older than any variable in O(Γ0), and no variable in
L1 is older than any variable in O(Γ1). But O(Γ1) = O(Γ0)]L0, so this means
that no variable in L1 is older than any variable in O(Γ0). Hence no variable in
L0 ] L1 is older than any variable in O(Γ0).

5. No variable in L0 is an ancestor of any variable in O(Γ0), and no variable
in L1 is an ancestor of any variable in O(Γ1). But O(Γ1) = O(Γ0)]L0, so this
means that no variable in L1 is ancestor of any variable in O(Γ0). Hence no
variable in L0 ] L1 is an ancestor of any variable in O(Γ0).

6. Suppose κ ∈ O(Γ0) and λ ∈ L0 ] L1, where λ <O(Γ2) κ. If λ ∈ L0

then since Γ1 �L0
Γ0 it follows that there is some λ′ ∈ Act(Γ0) such that

λ <O(Γ1) λ
′ ≤O(Γ1) κ. But then λ <O(Γ2) λ

′ ≤O(Γ2) κ as well. If λ ∈ L1,
then since κ ∈ O(Γ1) and Γ2 �L1 Γ1, there is some λ′ ∈ Act(Γ1) such that
λ <O(Γ2) λ

′ ≤ κ. But Act(Γ1) ⊆ Act(Γ0) ] L0. If λ′ ∈ Act(Γ0) then we are
done. If λ′ ∈ L0, then λ′ <O(Γ1) κ and so since Γ1 �L0

Γ0 there is some
λ′′ ∈ Act(Γ0) such that λ′ <O(Γ1) λ

′′ ≤O(Γ1) κ. But then we have:

λ <O(Γ1) λ
′ <O(Γ1) λ

′′ ≤O(Γ1) κ

and so we are done.
7. Let ϕ ∈ Γ+

0 . Since Γ1 � Γ0 there is some formula ϕ′ ∈ Γ+
1 such that

ϕ′ �O(Γ1) ϕ. Since Γ2 � Γ1 there is some formula ϕ′′ ∈ Γ+
2 such that ϕ′′ �O(Γ2)

ϕ′. But clearly ϕ′ �O(Γ1) ϕ entails ϕ′ �O(Γ2) ϕ, so transitivity of �O(Γ2) we get
ϕ′′ �O(Γ2) ϕ.

Proposition 5.16. Suppose Ψ �L Γ. If λ ∈ L and κ ∈ Act(Γ) are such that
λ is to the left of κ in O(Ψ), then there is an ordinal variable λ′ ∈ Act(Γ) such
that λ <O(Ψ) λ

′ and λ′ is also to the left of κ in O(Ψ).

Proof. Suppose λ ∈ L and κ ∈ Act(Γ), and λ is to the left of κ in O(Ψ).
Then there are ancestors κ0, λ0 of κ, λ respectively such that λ0 /O(Ψ) κ0. Since
κ ∈ O(Γ), we have κ0 ∈ O(Γ) since O(Ψ) = O(Γ) ] L and no variable in L is
an ancestor of any variable in O(Γ). Since λ0 /O(Ψ) κ0 we have λ0 ∈ O(Γ) since
O(Ψ) = O(Γ) ] L and no variable in L is older than any variable in O(Γ). It
follows that λ <O(Ψ) λ0 since λ ∈ L, λ0 ∈ O(Γ) and λ0 was an ancestor of λ.
Since Ψ �L Γ, there is some λ′ ∈ Act(Γ) with λ <O(Ψ) λ

′ ≤O(Ψ) λ0. It follows
that λ′ is to the left of κ, and so we are done.
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Definition 5.17. Let Γ be a ρ-tile. A ρ-tile Ψ is said to be an (a, ϕ, L)-successor
of Γ if [a]ϕ ∈ Γ+ and

Ψ �L (O(Γ) : {ϕ} ∪ {ψ | 〈a〉ψ ∈ Γ+}).

We say that Ψ is an a-successor of Γ if it is an (a, ϕ, L)-successor of Γ for some
ϕ and L. An a-successor Ψ of Γ is said to be a non-trivial a-successor if the
sequent O(Ψ) : [ă]

∨
Γ,Ψ is not provable by a slim proof.

Similarly, we say that Ψ is an a-successor of Γ, relative to some formula ϕ,
and we write Γ→a,ϕ Ψ, if Ψ is an (a, ϕ, L)-successor of Γ for some L.

Proposition 5.18. Suppose Ψ is a (a, ϕ, L)-successor of Γ. If λ ∈ L and
κ ∈ Act(Γ) are such that λ is to the left of κ in O(Ψ), then there is an ordinal
variable λ′ ∈ Act(Γ) such that λ < λ′ and λ′ is also to the left of κ in O(Ψ).

Proof. Immediate from Proposition 5.16.

5.3 Technical results on tiles and pre-tiles

In this subsection we will prove several observations on the relations between
tiles and pre-tiles that will be relevant to the mosaic game that we introduce
later as the main tool for our completeness proof.

The following proposition shows that provability of a given pre-tile can be
reduced to provability of a (finite) set of tiles. From the dual perspective, any
non-provable pre-tile can be saturated to some non-provable tile. Intuitively,
the idea behind the proof is to step by step construct a tree representing a non-
deterministic procedure to saturate a given pre-tile, in such a way that in each
step of the procedure some of the ordinal variables progress. For example, we
may add a child ξ of κ together with the formula ϕ(ξ) to a pre-tile that contains
the formula ∀λ < κ ϕ(λ) in order to meet the saturation condition associated
with such formulas, which results in a progression of the variable κ. The result
of this is that if a particular run of the procedure does not terminate but goes
on forever, then it produces an infinitely descending chain of ordinal variables.
The tree representing all possible runs of this non-deterministic procedure can
then be viewed as a slim proof tree that derives the given pre-tile from a finite
set of tiles as assumptions.

Proposition 5.19. Let O : Γ be any small ρ-pre-tile, and let ∆ be any finite
set of formulas. Then there is a (possibly infinite) slim proof tree Π with root
labelled O : Γ,∆, in which every non-axiom leaf is of the form O′ : Ψ,∆ for
some small ρ-tile O′ : Ψ with Ψ � Γ, and every infinite branch in Π has an
infinite descending <-chain of ordinal variables.

Proof. Throughout the proof we assume ∆ = ∅, for notational convenience. The
proof for the general case is not different in any significant respect.

We construct the proof tree Π in a step-by-step manner, as the limit of a
series of approximations (Πi)i<ω, where each leaf in each approximant Πi is
propositionally saturated. Let Π0 be the finite proof tree having Γ as its root
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sequent, followed by enough applications of the cut rule to ensure that all the
leaves of Π0 are propositionally saturated.

Given that the proof tree Πi has been constructed, consider a leaf of Πi

labelled by the sequent Ψ. We say that χ in the closure of ρ is a defect of Ψ if
one of the following conditions hold:

• χ is of the form νxϕ.

• χ belongs to Ψ+, is of the form νxκϕ, and there are no κ0 and ϕ ∈ Ψ+

such that κ0 <O(Ψ) κ and ϕ′ �O(Γ) ϕ(νxκ0ϕ).

• χ is of the form ϕ(νxκψ), all free ordinal variables of χ are active in Γ,
the formula ∃λ < κ : ϕ(µxλψ) does not belong to Ψµ, and there are no κ0

and ϕ′ ∈ Ψ+ with κ0 <O(Ψ) κ and ϕ′ �O(Γ) ϕ(νxκ0ψ).

Clearly, a leaf of Πi is a tile if it is propositionally saturated and has no defects.
If every leaf in Πi is a tile then we stop the process and set Π = Πi. Otherwise,
we pick a leaf l in Πi and a defect of its label Ψ, and extend Πi to Πi+1 according
to the following steps:

1. Apply the appropriate rule (the minimisation rule, the rule x : κ adding
the formula νxκϕ ≺O(Πi)+κ ϕ, or the ν(κ)-rule) depending on the type of
defect, adding one or two children for l in which the chosen formula is no
longer a defect.

2. Use right weakening to remove all non-minimal formulas in the positive
part of each new leaf. Note that this step removes any formula of the form
νx.ϕ that was the principal formula of the rule x : κ applied in the first
step.

3. Finally, apply cuts until all leaves above l are propositionally saturated.

To be precise, the choice of which defect to deal with in each step of the construc-
tion has to follow a fair scheduling procedure to ensure that each defect is even-
tually taken care of, but this is rather trivial since there are only finitely many
defects to choose from at each stage. Given that we implement fair scheduling,
we ensure that each leaf in the proof tree Π that we produce as the limit of the
sequence (Πi)i<ω is a tile, so it remains only to show that every infinite branch
in Π has an infinite descending chain of ordinal variables.

So let β be an infinite branch of Π. For each i < ω, let β|Πi denote the
initial segment of β that is a branch from the root to a leaf of Πi, and let Γi
denote the last sequent on β|Πi. For each i < ω we write Oi for O(Γi). Since β
is infinite there are infinitely many i such that β|Πi is a proper initial segment
of β|Πi+1; we say that such an index i is a growth point for β.

The following claim shows that the procedure maintains the invariant that,
if Ψ′ is a descendant of Ψ in Πi, then Ψ′ � Ψ.

Claim 4. Let L = O(Γi+1) \ O(Γi). Then,

1. O(Γi+1) = O(Γi) ] L.
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2. Act(Γi+1) ⊆ Act(Γi) ] L.

3. No variable in L is older than any variable in OV(O(Γi)), and every vari-
able in L is a root (has no ancestors) or a child of some variable in Act(Γi).

4. If ϕ ∈ Γ+
i , then there is some formula ϕ′ ∈ Γ+

i+1 with ϕ′ �Oi+1
ϕ.

Proof of Claim 4. The proof of items (1) and (2) are trivial since the construc-
tion never removes variables from the constraint and never makes pre-existing
non-active variables active. For the proof of item (3), we just need to inspect the
construction of Γi+1: it is obvious that no variable in O(Γi+1) \ O(Γi) is older
than any variable in O(Γi), by inspection of the rules applied. Furthermore, we
note that any variable in L must have been added either as a new root or as
a child of some active variable of Γi; the rule x : κ adds κ as a new root, the
minimisation rule is only applied to formulas all of whose variables are active,
and the ν(κ)-rule is only applied to formulas that actually appear in Γ+

i , which
certainly means all variables of that formula are active. Applications of right
weakening or cuts do not introduce any new ordinal variables at all.

The proof of item (4) is easy, since the only steps in the construction of Γi+1

that removes formulas in Γi are applications of weakening where we pick the
minimal formulas.

Given an index i let u(Γ)i denote the set {u(ϕ) | ϕ ∈ Γ+
i }. It is clear from

Claim 4 that u(Γ)i ⊆ u(Γ)j whenever i ≤ j. So since the set of underlying plain
formulas in Γ+

i is bounded by the size of the closure of the root formula ρ, there
is some index i with u(Γ)i = u(Γ)j for all j ≥ i. We may as well assume i = 0
since otherwise we can just consider a final segment of β suitably re-indexed.
With this assumption in place we can now prove:

Claim 5. For every growth point i of β, either there is some formula ϕ ∈ Γ+
i

and some formula ϕ′ in Γ+
i+1 \ Γ+

i with ϕ′ ≺Oi+1
ϕ, or Γi+1 has strictly fewer

defects than Γi.

Proof of Claim 5. Let i be a growth point. We make a case distinction according
to how Γi+1 follows a fix of some defect. There are the following possible cases
to consider:

Case Γi is the conclusion of an application of the x : κ-rule in which
the principal formula νxϕ is a defect. Then Γ+

i+1 contains the formula

νxκϕ ≺O(Γi+1) νxϕ. Furthermore, νxκϕ cannot be in Γ+
i because then νxϕ

would not be minimal.
Case Γi is the conclusion of an application of the ν(κ)-rule in which

the principal formula νxκϕ is a defect. The premise of this rule application
then contains ϕ[νxκ

′
ϕ/x] where κ′ <Oi+1

κ. Let ψ be the unique formula in Γi
such that u(ψ) = u(ϕ[νxκ

′
ϕ/x]). We cannot have ψ �Oi+1 ϕ[νxκ

′
ϕ/x], since

then νxκϕ was not a defect of Γi. So ϕ[νxκ
′
ϕ/x] ≺Oi+1

ψ, and since ψ ∈ Γ+
i

we are done.
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Case Γi is the conclusion of an application of the minimisation rule,
and Γi+1 is a descendant of the left premise. Since no formulas in Γ+

i or
Γ−i are removed in the left premise, and no new active variables are introduced,
we see that the left premise is already a propositionally saturated small pre-tile
and therefore equal to Γi+1. So in this case the defect is fixed and no new
defects are introduced, meaning that Γi+1 has strictly fewer defects than Γi.

Case Γi is the conclusion of an application of the minimisation rule,
and Γi+1 is a descendant of the right premise. The defect that is to be
fixed is of the form ϕ(νxκψ), where all variables of this formula are active in
Γi, θ ∈ Γ+

i for some θ �Oi ϕ(νxκψ), and the right premise contains ϕ(νxκ
′
ψ)

for some κ′ with κ′ <Oi+1 κ. Either ϕ(νxκ
′
ψ) ∈ Γ+

i+1, or it is replaced by some

≺Oi+1
-smaller formula θ′ ∈ Γ+

i+1. Note that in the latter case we cannot have
θ ≺Oi+1

θ′, since then θ′ would not be minimal. By linearity of �Oi+1
we get

θ′ �Oi+1 θ. If θ′ = θ then clearly Γi+1 contains strictly fewer defects than Γi
since no new formulas were introduced, and in the other case we have θ′ ≺Oi+1 θ
as required.

This concludes the proof of the Claim.

Let ϕ be the underlying plain formula of some formula in Γ+
0 . Say that

ϕ is improved at index i if, for ϕ′ denoting the unique formula in Γ+
i with

u(ϕ′) = ϕ and ϕ′′ denoting the unique formula in Γ+
i+1 with u(ϕ′′) = ϕ, we have

ϕ′′ ≺Oi+1 ϕ
′.

From Claim 5 and the pigeonhole principle (there is only a fixed finite num-
ber of underlying plain formulas), it follows that some formula is improved at
infinitely many indices. This gives us an infinite ≺-descending chain of formulas
on β and therefore, by considering the highest ranking variable in ϕ whose anno-
tation changes infinitely many times, an infinite ≺-descending chain of ordinal
variables. By Proposition 5.6, this ensures that we find an infinite <-descending
chain of ordinal variables on β.

Finally, from Claim 4 it clearly follows that Γi+1 � Γi for all i. Together
with Proposition 5.15, it follows that Ψ � Γ for any leaf Ψ in the proof tree Π
that we have constructed.

As a corollary we obtain

Proposition 5.20. Let O : Γ be any small ρ-tile and suppose [a]ϕ ∈ Γ. Then
there is a (possibly infinite) slim proof tree Π, in which every leaf Ψ is a non-
trivial small a-successor of Γ containing ϕ′ for some ϕ′ ≺O(Ψ) ϕ, and every
infinite branch has an infinite <-descending chain of ordinal variables.

Proof. We first note that, where {[a]ϕ} ∪ {〈a〉ψ | ψ ∈ Ψ} ⊆ Γ, the following is
an instance of the modal rule:

O : [ă]
∨

Γ, ϕ,Ψ

O : Γ

Now, apply Proposition 5.19 to the sequent O : [ă]
∨

Γ, ϕ,Ψ, producing a slim
proof tree in which every leaf is labelled by some sequent of the form O′ :
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[ă]
∨

Γ,Θ where O′ : Θ is an a-successor of Γ. Finally, for each such leaf
labelled O′ : [ă]

∨
Γ,Θ, if the a-successor O′ : Θ is non-trivial then extend it

by an application of weakening, leaving O′ : Θ as the label of the new leaf, and
otherwise, plug in a wellfounded proof of O′ : [ă]

∨
Γ,Θ. The resulting proof

tree now has the properties required by the proposition.

Next we draw some consequences of the saturation conditions of a tile. The
following proposition shows that an unprovable tile behaves in accordance with
the local conditions for a counter-model.

Proposition 5.21. Let Γ be a small tile which does not have a slim proof. The
following properties hold.

1. If ϕ ∧ ψ ∈ Γ+ then ϕ′ ∈ Γ+ for some ϕ′ �O(Γ) ϕ or ψ′ ∈ Γ+ for some
ψ′ �O(Γ) ψ.

2. If ϕ ∨ ψ ∈ Γ then ϕ′ ∈ Γ+ for some ϕ′ �O(Γ) ϕ and ψ′ ∈ Γ+ for some
ψ′ �O(Γ) ψ.

3. If µxϕ ∈ Γ then θ ∈ Γ+ for some θ �O(Γ) ϕ[µxϕ/x].

Proof. For item (1), suppose that ϕ ∧ ψ ∈ Γ+ but there is no ϕ′ �O(Γ) ϕ with
ϕ′ ∈ Γ+ and no ψ′ �O(Γ) ψ with ψ′ ∈ Γ. Then since all ordinal variables in

both ϕ and ψ are active in Γ, we get ϕ ∈ Γ and ψ ∈ Γ. Thus we can provide a
slim proof of Γ as follows:

Proposition 5.8

O(Γ) : ϕ,ϕ
rw

O(Γ) : ϕ,ϕ, ψ

Proposition 5.8

O(Γ) : ψ,ψ
rw

O(Γ) : ψ,ϕ, ψ
∧

O(Γ) : ϕ ∧ ψ,ϕ, ψ
rw

O(Γ) : Γ

The proofs of items (2) and (3) are similar.

Next, we prove two crucial propositions about a-successors of a tile, both
involving the “backwards modalities” for the converse action ă.

Proposition 5.22. Let Γ be a small ρ-tile and let Ψ be a non-trivial small
a-successor of Γ. Suppose 〈ă〉ψ ∈ Ψ+, and suppose every ordinal variable in ψ
is active in Γ. Then ψ′ ∈ Γ+ for some ψ′ �O(Γ) ψ.

Proof. Since 〈ă〉ψ ∈ Ψ+ the underlying plain formula of ψ belongs to the closure
of ρ, and by assumption all its ordinal variables are active in Γ. Hence, since Γ
is a tile, either ψ′ ∈ Γ+ for some ψ′ �O(Γ) ψ or ψ ∈ Γ−. But in the latter case,
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we can easily construct a wellfounded proof of the sequent O(Ψ) : [ă]
∨

Γ,Ψ:

Proposition 5.8

O(Ψ) : ψ,ψ

O(Ψ) : ψ,
∨

Γ
mod

O(Ψ) : 〈ă〉ψ, [ă]
∨

Γ

O(Ψ) : Ψ, [ă]
∨

Γ

This contradicts the assumption that Ψ was a non-trivial a-successor.

The next proposition is more subtle, and will play a key role in our com-
pleteness proof for slim proofs. First a definition:

Definition 5.23. Let Γ be a small ρ-tile and let Ψ be a non-trivial small
a-successor of Γ. Suppose 〈ă〉ψ ∈ Ψ+ and suppose x is the highest ranking
ν-variable of ψ such that λ = oψ(x) is not active in Γ, assuming such a variable
exists. Let κ be an active variable of Γ such that λ ≺O(Ψ) κ. Let σ : Act(Ψ)→
Act(Γ) be some substitution on ordinal variables such that:

1. σ(ξ) = ξ for each ξ that is active in Γ,

2. σ(λ) ≺O(Γ) κ,

3. ψ′ ∈ Γ+ for some ψ′ �O(Γ) ψ[σ].

Then we say that the substitution σ preserves progression from κ to 〈ă〉ψ (rel-
ative to Γ and Ψ). If ϕ is a formula in Γ+ and σ preserves progression from
oϕ(x) to 〈ă〉ψ, then we say the substitution σ preserves progression from ϕ to
〈ă〉ψ.

Proposition 5.24. Let Γ be a small ρ-tile and let Ψ be a non-trivial small
a-successor of Γ. Suppose 〈ă〉ψ ∈ Ψ+. Let o be any annotation whose range is
contained in Act(Γ) and suppose x is a fixpoint variable such that oψ ≺xO(Ψ) o

and oψ(y) ∈ Act(Γ) for all y higher ranking or equal to x. Then there is a
formula θ such that:

• θ ∈ Γ+,

• u(θ) = u(ψ), and

• oθ ≺yO(Γ) o for some y higher ranking or equal to x.

Proof. We first define a substitution τ : Act(Ψ) → Act(Γ) as follows: for each
variable λ ∈ Act(Ψ), τ maps λ to its <O(Ψ)-smallest ancestor in Act(Γ). Note
that this is well-defined by definition of an a-successor, and note that τ(κ) = κ
for κ ∈ Act(Γ)∩Act(Ψ), and therefore τ(oψ(y)) = oψ(y) = o(y) for all y higher
ranking or equal to x.

Claim 6. There is some formula θ ∈ Γ+ such that θ �O(Γ) ψ[τ ].
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Proof of Claim 6. Otherwise we have ψ[τ ] ∈ Γ−, and we can derive O(Ψ) :
Ψ, [ă]

∨
Γ as follows.

Proposition 5.7
(τ increasing)

O(Ψ) : ψ,ψ[τ ]

O(Ψ) : ψ,
∨

Γ
(basic modal logic)

O(Ψ) : 〈ă〉ψ, [ă]
∨

Γ

O(Ψ) : Ψ, [ă]
∨

Γ

Since oψ(x) ≺O(Ψ) o(x) we have two different cases to consider.
Case 1: oψ(x) is to the left of o(x). Since Ψ was an a-successor, we have

oψ(x) ∈ L for some L such that O(Ψ) = O(Γ)]L. By Proposition 5.18 there is
some variable κ ∈ Act(Γ) such that oψ(x) <O(Ψ) κ and κ is to the left of o(x) in
O(Ψ) (equivalently in O(Γ)). By definition of τ it follows that τ(oψ(x)) is also
to the left of o(x) in O(Γ). Hence τ(oψ(x)) ≺O(Γ) o(x). By Claim 6 there is
some formula θ ∈ Γ+ such that θ �O(Γ) ψ[τ ]. It easily follows that oθ ≺yO(Γ) o

for some y higher ranking or equal to x.
Case 2: oψ(x) <O(Ψ) o(x). Let us write ψ as α(νxoψ(x)β) so that ψ[τ ] is

α[τ ](νxτ(oψ(x))β[τ ]).

Claim 7. ∃ξ < o(x) : α[τ ](µxξβ[τ ]) /∈ Γµ.

Proof of Claim 7. By assumption we have oψ(x) <O(Ψ) o(x), so if the displayed
formula were in Γµ then we could prove O(Ψ) : Ψ, [ă]

∨
Γ as follows:

Proposition 5.7
τ increasing

O(Ψ) : α(νxoψ(x)β), α[τ ](µxoψ(x)β[τ ])
oψ(x) <O(Ψ) o(x)

O(Ψ) : α(νxoψ(x)β),∃ξ < o(x) : α[τ ](µxξβ[τ ])

O(Ψ) : α(νxoψ(x)β),
∨

Γ

O(Ψ) : 〈ă〉α(νxoψ(x)β), [ă]
∨

Γ

O(Ψ) : Ψ, [ă]
∨

Γ

Since θ ∈ Γ+ and θ �O(Ψ) ψ[τ ], the saturation condition of a tile with respect
to the minimisation rule ensures that there is some λ <O(Γ) o(x) and some

formula θ′ ∈ Γ+ such that θ′ �O(Γ) α[τ ](νxλβ[τ ]). Let o′ be the annotation of

the formula α[τ ](νxλβ[τ ]), so that o′(x) = λ <O(Γ) o(x), hence o′(x) ≺O(Γ) o(x).
Furthermore, for all y ranking higher than or equal to x we have:

o′(y) = oψ[τ ](y)

= τ(oψ(y))

= o(y)

where the last inequality is due to oψ(y) being active in Γ (since x was the highest
ranking variable with oψ(x) non-active in Γ). Now let o′′ be the annotation of
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Position Player Moves
ρ Refuter {Γ ∈ Tρ | ρ ∈ Γ+}

Γ ∈ Tρ Prover {(Γ, [a]ϕ) | [a]ϕ ∈ Γ+}
(Γ, [a]ϕ) ∈ Tρ × Clos(ρ) Refuter {Ψ ∈ Tρ | Γ→a,ϕ Ψ}

Table 3: Moves in the mosaic game

θ′. Since θ′ �O(Γ) α[τ ](νxλβ[τ ]) it follows by definition that o′′ ≺yO(Γ) o
′ for

some y. Either y is higher ranking than or equal to x in which case o′′(y) ≺O(Γ)

o′(y) �O(Γ) o(y), or y is lower ranking than x in which case o′′(x) = o′(x) ≺O(Γ)

o(x). In either case the desired conclusion follows.

5.4 Completeness of slim proofs

The goal of this section is to show that every valid formula ρ has a slim proof.
We will do so using a two-player game that we call the mosaic game, played
between two players called “Prover” and “Refuter”. Our strategy is as follows:
We first prove the determinacy of the mosaic game, that is, the fact that either
Prover or Refuter has a winning strategy. It then suffices to show that Refuter
cannot have a winning strategy if ρ is valid, and ρ has a slim proof if the mosaic
game is a win for Prover.

We now define the mosaic game for the given formula ρ. The two players
in the mosaic game are called Prover and Refuter. There are three kinds of
positions in this game: the fixed formula ρ, used as the starting position, ρ-tiles
and pairs (Γ, [a]ϕ) where Γ is a ρ-tile and [a]ϕ ∈ Γ+. Ownership of positions
and legal moves of the game are specified in Table 3, where we recall that Tρ
denotes the set of ρ-tiles, and we write Γ →a,ϕ Ψ if Ψ is an a-successor of Γ,
relative to ϕ (cf. Definition 5.17). In words, the mosaic game for ρ starts at the
formula ρ itself, which is a position for Refuter. After Refuter’s initial move,
which consists of a ρ-tile containing the formula ρ, the two players take turns.
At a ρ-tile Γ, Prover has to select a formula [a]ϕ ∈ Γ+, and at a position of the
form (Γ, [a]ϕ), Refuter has to pick a witness in the form of an a-successor of Γ,
relative to ϕ.

Prover wins an infinite play if the play contains an infinite descending ≺-
chain of ordinal variables, otherwise Refuter wins the play. More formally, if
(Oi : Γi)i<ω enumerates the ρ- tiles occurring in an infinite play, then this play is
won by Prover iff there exists k < ω and an infinite sequence of ordinal variables
(κi)i<ω such that κi+1 �Ok+i κi for all i, and κi+1 ≺Ok+i κi for infinitely many
i. (Note that if Γ0,Γ1 are tiles such that Γ1 is reachable from Γ0 via some
partial play in the mosaic game, then the constraint of Γ1 contains that of Γ0.
This is a direct consequence of the definition of an a-successor and the relation
�L over pre-tiles.) Finite plays are lost by the player who got stuck.

Proposition 5.25. The mosaic game is determined.
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Proof. Fix a formula ρ and an injection of the set of positions into the natural
numbers, so that every play in the mosaic game for ρ corresponds to a unique
function from N to N, i.e., an element of the Baire space NN. Let P ⊆ NN be
the set of sequences in which Refuter makes an illegal move and (moreover) the
first illegal move. Furthermore, let W ⊆ NN describe the set of infinite plays in
the mosaic game for ρ that are winning for Prover.

Recall that Prover and Refuter take alternating turns in the mosaic game;
it is then not hard to see that Prover has a winning strategy in the mosaic
game for ρ iff Player I (i.e., the player that plays first) has a winning strategy
in the Gale–Stewart game on the Baire space with winning set P ∪ W . We
claim that this winning set is Borel, whence determinacy of the mosaic game is
a consequence of Martin’s Borel Determinacy Theorem [13]. Being a union of
open sets, P is clearly Borel. We show that W is also Borel.

Given a play π, say that an ordinal variable κ is covered in π if it has some
active descendant in every constraint in π in which κ occurs. Note that for
each ordinal variable κ, the set of plays in which κ is covered is Borel. Let
Γ0, . . . ,Γn−1 be a sequence of n tiles from a given play π in the mosaic game,
with constraintsO0, . . . ,On−1, such that Γn−1 � . . . � Γ0. We call this sequence
a stable progression of length n if there are variables κ0, . . . , κn−1 each of which
is covered in π, such that:

• κi ∈ Act(Oi) for each i < n,

• κj <Oj κi for 0 ≤ i < j < n.

Let Wn be the set of infinite plays that contain a stable progression of length
n. Clearly each set Wn is Borel, so the set

⋂
n∈ωWn is Borel. We claim that

W =
⋂
n∈ωWn.

For the left-to-right inclusion: if π ∈W then it has an infinite ≺-descending
chain. Repeating the proof of Proposition 5.6, we can show that π in fact
has an infinite <-descending chain. Since as a sequence of tiles the play π is
decreasing with respect to the order �, by definition of the relation � on tiles
(Definition 5.14), it is not hard to see that every ordinal variable in this infinite
<-descending chain has to be covered. Hence π contains stable progressions of
arbitrary length.

For right-to-left, suppose π has a progression of length n, for all n ∈ ω.
We define a tree consisting of all the ordinal variables that are covered in π,
where λ is a child of κ if this holds with respect to some constraint appearing
in π. Note that this is a finite set of finitely branching rooted trees: since
we never add <-ancestors to pre-existing variables (by Definition 5.14), the set
of children of a variable is increasing along π, and since the number of active
variables in a tile is bounded this means there is also a bound on the size of
<-anti-chains of covered variables in any constraint in π. We can view the
structure as a single finitely branching tree by appending a new root. The
resulting tree is infinite since π contains stable progressions of arbitrary length,
and so by König’s lemma it contains an infinite branch. This infinite branch is
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an infinite <-descending chain of ordinal variables in π, and therefore also an
infinite ≺-descending chain.

With Proposition 5.25 in place, we want to prove that a winning strategy
for Prover yields a slim proof, and on the other hand, a winning strategy for
Refuter yields a counter-model. We begin with the first statement.

Proposition 5.26. If Prover has a winning strategy in the mosaic game for ρ,
then the formula ρ has a slim proof.

Proof. Let σ be a winning strategy for Prover in the mosaic game for ρ. We
show how to construct a slim proof for an arbitrary small ρ-tile Γ � {ρ} as
Proposition 5.19 ensures this is sufficient to establish that ρ admits a slim proof.
Consider the tree of maximal plays consistent with σ starting from Γ. By
assumption, all such plays are winning for Prover. We now let Π be the tree
of positions owned by Prover in these plays. These positions are precisely the
small ρ-tiles in the σ-plays starting from Γ. We can thus view Π as a derivation
with root Γ in the calculus consisting only of rules

{Ψ ∈ Tρ | Φ→a,ϕ Ψ}
[a]ϕ ∈ Φ

Φ

where →a,ϕ is the relation of a-successor relative to ϕ from Definition 5.17.
Moreover, as σ is winning, every infinite path through the derivation contains
an infinite ≺-decreasing chain of ordinal variables through the sequence of con-
straints on the path. All that remains is to replace each of above rules by
the corresponding slim derivation guaranteed by Proposition 5.20 and Propo-
sition 5.6: The restriction on applications of lw in slim derivations guarantees
that the induced expansion of Π is a slim proof.

We now come to the key technical result of the paper, showing that winning
strategies for Refuter indeed correspond to counter-models.

Proposition 5.27. Suppose Refuter has a winning strategy in the mosaic game
for ρ. Then ρ is not valid.

Proof. Fix a winning strategy σ for Refuter, and let Γ be the tile containing ρ
chosen by the first move of Refuter according to σ. We construct a counter-
model Mσ = (Wσ, Rσ, V σ) as follows: Wσ is the set of σ-guided partial plays
whose last position belong to Prover, i.e. the last position is a small tile. In
the sequel we may write π v π′ (π @ π′) if π is an initial segment of π′ (a
proper initial segment of π′, respectively). Given an action label a, and plays
π0, π1 ∈Wσ, we set (π0, π1) ∈ Rσa if and only if either

1. π1 extends π0 with a choice of a formula [a]ϕ by Prover, followed by a
choice of a non-trivial a-successor Ψ of the last position on π0 containing
some ϕ′ ≺O(Ψ) ϕ, according to the strategy σ of Refuter, or
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2. π0 extends π1 with a choice of a formula [ă]ϕ by Prover, followed by a
choice of a non-trivial ă-successor Ψ of the last position on π1 containing
some ϕ′ ≺O(Ψ) ϕ, according to the strategy σ of Refuter.

Note that π0R
σ
aπ1 iff π1R

σ
ăπ0. For the valuation V σ, we set π ∈ V σ(p) if and

only if p ∈ Θ, where Θ is the last position of π.
Note that (Γ, ρ) is a position in the evaluation game for ρ in Mσ, since

Γ ∈ Wσ (more precisely, the partial play consisting only of the position Γ is
in Wσ). We shall provide a winning strategy σ′ for Falsifier in the evaluation
game at this position. While constructing the strategy σ′ we shall inductively
maintain the condition that for any σ′-guided partial play (π0, ϕ0)...(πn, ϕn),
the partial plays π0, ..., πn are σ-guided, and furthermore there is a sequence
of positively annotated formulas (ϕ′0, ..., ϕ

′
n) such that, if we denote the last

sequent on each play πi as Θi and its constraint set as Oi, then:

1. ϕ′i ∈ Θ+
i .

2. u(ϕ′i) = ϕi.

3. If i < n, ϕi = ψ0 ∨ψ1 and ϕi+1 = ψj where j ∈ {0, 1}, then πi = πi+1, ϕ′i
is of the form ψ′0 ∨ ψ′1 and ϕ′i+1 �Oi ψ′j .

4. If i < n, ϕi = ψ0 ∧ψ1 and ϕi+1 = ψj where j ∈ {0, 1}, then πi = πi+1, ϕ′i
is of the form ψ′0 ∧ ψ′1 and ϕ′i+1 �Oi+1 ψ

′
j .

5. If i < n, ϕi = µx.ψ and ϕi+1 = ψ[µx.ψ/x], then πi = πi+1, ϕ′i is of the
form µx.ψ′ and ϕ′i+1 �Oi+1 ψ

′[µx.ψ′/x].

6. If i < n, ϕi = νx.ψ and ϕi+1 = ψ[νx.ψ/x], then πi = πi+1, ϕ′i is of the
form νxκθ and ϕ′i+1 �Oi+1 θ[νx

κ0θ/x] for some κ0 such that κ0 <Oi+1 κ.

7. If i < n, ϕi = [a]ψ and ϕi+1 = ψ, then πi @ πi+1, (πi, πi+1) ∈ Rσa , and ϕ′i
is of the form [a]ψ′ where ϕ′i+1 �Oi+1 ψ

′.

8. If i < n, ϕi = 〈a〉ψ, ϕi+1 = ψ, then (πi, πi+1) ∈ Rσa , ϕ′i is of the form
〈a〉ψ′ and either

(a) πi @ πi+1 and ϕ′i+1 �Oi+1 ψ
′, or

(b) πi+1 @ πi, and letting k be the greatest index less than i + 1 with
πk = πi+1, we have, either:

i. all ordinal variables in ψ′ are active in Θi+1, and ϕ′i+1 �Oi+1
ψ′,

or

ii. some ordinal variable in ψ′ is not active in Θi+1, for the highest
ranking fixpoint variable x with oψ′(x) /∈ Act(Θi+1) it does not
hold that oψ′ ≺xOi oϕ′k , and ϕ′i+1 �Oi+1 ψ

′[τ ] for some substitu-
tion τ with τ(κ) = κ for all κ ∈ Act(Θi+1), or

iii. some ordinal variable in ψ′ is not active in Θi+1, for the highest
ranking fixpoint variable x with oψ′(x) /∈ Act(Θi+1) it holds that
oψ′ ≺xOi oϕ′k where x is the highest ranking, and for some y higher
ranking or equal to x we have oϕi+1

≺yOi+1
oψ′ .
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Suppose the strategy σ′ has been defined on all partial plays of length < n,
and let (π0, ϕ0)...(πn, ϕn) be a play of length n. We show how to define the
strategy σ′ on this play, if the last position belongs to Falsifier, and we show
how to maintain the inductive invariant for each σ′-guided play of length n+ 1
extending (π0, ϕ0)...(πn, ϕn). The construction is carried out on a case-by-case
basis depending on the shape of the last position.

Case ϕn is of the form p or p for some propositional variable p.
Then there are no available moves, so we need not define the strategy σ′ here
and the inductive invariant is trivially maintained for all extensions of the play.

Case ϕn is of the form α ∧ β. This position belongs to Falsifier. By the
induction hypothesis ϕ′n ∈ Θ+

n , and u(ϕ′n) = α ∧ β. Hence ϕ′n is of the form
α′ ∧ β′ where u(α′) = α and u(β′) = β. By Proposition 5.21, α′′ ∈ Θ+

n for some
α′′ �On α′ or β′′ ∈ Θ+

n for some β′′ �On β′ (or both). In the first case we
define σ′ so that Falsifier chooses (πn, α) and set ϕ′n+1 = α′′, and in the second
case we define σ′ so that Falsifier chooses (πn, β) and set ϕ′n+1 = β′′ (and if
both cases hold the choice can be defined arbitrarily). The inductive invariant
is clearly maintained.

Case ϕn is of the form α ∨ β. This position belongs to Verifier. By the
induction hypothesis ϕ′n ∈ Θ+

n , and u(ϕ′n) = α ∨ β. Hence ϕ′n is of the form
α′ ∨ β′ where u(α′) = α and u(β′) = β. By Proposition 5.21, α′′ ∈ Θ+

n for some
α′′ �On α′ and β′′ ∈ Θ+

n for some β′′ �On β′. So clearly, given any extension
of the play (π0, ϕ0)...(πn, ϕn) in which Verifier chooses (πn, γ) with γ ∈ {α, β},
we can choose γ′ so that the inductive invariant is maintained.

Case ϕn is of the form [a]α. This position belongs to Falsifier. The
shadow formula ϕ′n is of the form [a]α′ where u(α′) = α, and we have [a]α′ ∈ Θ+

n

by the induction hypothesis. Let Prover play the formula [a]α′, and let Ψ be the
non-trivial small a-successor of Θn chosen by Refuter in response to this move
according to the strategy σ. By definition of an admissible move for Refuter
there is some α′′ ∈ Ψ+ such that α′′ �O(Ψ) α

′. We set σ′ so that Falsifier chooses
(πn · Ψ, α). Since α′′ ∈ Ψ and u(α′′) = u(α′) = α, the inductive invariant is
maintained.

Case ϕn is of the form 〈a〉α. This position belongs to Verifier, and we
have to show that the inductive invariant is maintained for every possible move
of Verifier. Every choice of Verifier at this position is of the form (π′, α) where
one of the following two cases holds: (i) π′ is of the form (πn · Ψ) where Ψ is
a non-trivial a-successor of Θn, or (ii) πn is of the form π′ · Θn where Θn is a
non-trivial ă-successor of the last tile on π′. In either case, ϕ′n is of the form 〈a〉β
where u(β) = α. In case (i), we must have some α′ ∈ Ψ+ with α′ �O(Ψ) β by
definition of an a-successor, and the inductive invariant is maintained. In case
(ii), denote the last tile on π′ by Θ′. Clearly, this means that there must be some
index k < n for which πk = π′, so let k be the largest such index. If all ordinal
variables of β are active in Θ′ then pick α′ to be some formula in (Θ′)+ with
α′ �O(Θ′) β, which exists by Proposition 5.22. If some ordinal variable of β is
non-active in Θ′ then let x be the highest ranking variable with oβ(x) /∈ Act(Θ′).
If it does not hold that oβ ≺xO(Θn) oϕ′k then let the substitution τ be as in the
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proof of Proposition 5.24. Then we pick ϕ′n+1 so that ϕ′n+1 �O(Θn) β[τ ] as
provided in the same proof. Finally, if it holds that oβ ≺xO(Θn) oϕ′k then pick

ϕ′n+1 so that oϕ′n+1
≺yO(Θ′) oϕ′k for some y higher ranking or equal to x, as

provided by Proposition 5.24.
Case ϕn is of the form νxα. Then the unique next position in any exten-

sion of this play is (πn, α[νxα/x]). The formula ϕ′n ∈ Θ+
n is νxκβ for some κ

and some β with u(β) = α. By the definition of a tile there is some κ0 such that
κ0 <O(Θn) κ and there is some formula γ ∈ Θ+

n such that γ �O(Θn) β[νxκ0β/x].
Since clearly u(γ) = u(β[νxκ0β/x]) = α[νx.α/x], the invariant is maintained.

Case ϕn is of the form µxα. Then the unique next position in any exten-
sion of this play is (πn, α[µxα/x]). The formula ϕ′n ∈ Θn is µxβ for some β with
u(β) = α. By the definition of a tile we have γ �On β[µxβ/x] for some γ ∈ Θn.
Since clearly u(γ) = u(β[µxβ/x]) = α[µxα/x], the invariant is maintained.

We now show that σ′ is indeed a winning strategy for Falsifier. First we show
that every full finite σ′-guided play is won by Falsifier. The last position of such
a play must take one of the following forms: (i) (π, p) for some propositional
variable p with π ∈ V σ(p), (ii) (π, p) for some propositional variable p with
π /∈ V σ(p), or (iii) (π, [a]ϕ) with π not having an a-successor.

Now the latter case cannot occur — this is a more or less direct consequence
of our construction of the relation Rσa , based on Refuter’s winning strategy σ in
the mosaic game. In the other two cases we reason as follows, denoting the last
tile on π by Θ. If the last position of the play is (π, p) and π ∈ V σ(p) then p ∈ Θ
by definition of V σ. But p ∈ Θ by the invariant of σ′-guided plays, so we get
an instance of excluded middle which contradicts the definition of a non-trivial
tile. On the other hand, if the last position is (π, p) and π /∈ V σ(p) then p /∈ Θ
by definition. This contradicts the invariant of σ′-guided plays, which says that
p ∈ Θ. So in each case the assumption that the finite full play is lost by Falsifier
leads to a contradiction, and we have established that Falsifier wins every full
finite σ-guided play.

In the remainder of the proof we will argue that every infinite σ′-guided play
is won by Falsifier as well. Let (πi, ϕi)i<ω be an infinite σ′-guided play, and
assume for a contradiction that this play is lost by Falsifier. As an immediate
consequence of the following claim (cf. our discussion of the evaluation game
in section 2.3), this means that the highest ranking variable that is unfolded
infinitely many times in the play is a ν-variable.

Claim 8. Let (ϕi)i<ω be an infinite trace starting from ϕ0 = ρ, and let ηxψ
be its most significant formula. Then for any other formula λz χ that occurs
infinitely often on this trace, we have x <ρ z, i.e., x ranks higher than z in the
subsumption order of ρ.

Proof of Claim (sketch). While the statement of the claim is rather intuitive,
the details of its proof are quite tedious. Define the relation vC on the fixpoint
formulas in the set Clos(ρ) by putting α vC β if there is a finite trace from α
to β such that α is a subformula of every formula on the trace. It then follows
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from the assumptions of the claim that the formula ηxψ is vC-minimal among
all fixpoint formulas appearing on the trace (ϕi)i<ω. Now consider Kozen’s
expansion map exp from Sfor(ρ) to Clos(ρ) [12]; the key observation is that
for any two bound variables x, y ∈ Var(ρ) we have that x <ρ y iff exp(x) @C
exp(y).

To contradict the assumption that σ was a winning strategy for Refuter, we
shall now construct an infinite σ-guided play containing an infinite progressing
chain of ordinal variables, which is therefore won by Prover.

We denote the last sequent on each partial play πi by Θi, and we denote
O(Θi) by Oi. Consider the infinite sequence of “shadow formulas” (ϕ′i)i<ω.
Given a fixpoint variable x, say that the index i is a progress point for x if πi is
an initial segment of πi+1 and oϕ′i+1

(x) 6= oϕ′i(x). We refer to the highest ranking

ν-variable that has infinitely many progress points on (ϕ′i)i<ω as the dominant
variable of the sequence and denote it by Z. Note that at least one ν-variable
has infinitely many progress points, since by clause (6) in the construction of
the shadow formulas ϕ′i, every index at which a ν-variable is unfolded on the
play (πi, ϕi)i<ω must be a progress point either for that variable or some higher
ranking variable, and since there is a ν-variable unfolded infinitely many times
in the play (πi, ϕi)i<ω.

Claim 9. There is an index k < ω such that:

• πk is an initial segment of πm for all m > k,

• no higher ranking ν-variable than Z has any progress point after k,

• no higher ranking variable than Z is unfolded at any point after k.

Proof of Claim. Let k0 be some index for which no higher ranking ν-variable
than Z has any progress points after k0, and no higher ranking fixpoint variable
than Z is unfolded after k0. Such an index exists by definition of Z (and
since Z must be higher ranking or equal to the highest ranking variable that is
unfolded infinitely many times on (πi, ϕi)i<ω, since that variable is a ν-variable
by assumption and has infinitely many progress points). Now consider the set
of σ-guided partial plays of the form πm with m ≥ k0. It is clear that this set
is downwards directed with respect to the initial segment order, so we find a
shortest σ-guided play π′ belonging to this set. We set k to be the smallest
index ≥ k0 for which πk = π′.

We assume that k = 0 in the previous claim, since otherwise we can just re-
index the play (πi, ϕi)i<ω. For each index i we let ξi denote the ordinal variable
oϕ′i(Z).

Claim 10. Suppose that i ≤ j < ω are indices such that πi = πk = πj for all
i ≤ k ≤ j. If Z has a progress point k with i ≤ k < j then ξj ≺Oj ξi, and
otherwise ξj = ξi.
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Proof of Claim. This is proved by induction on the difference j− i, the case for
j − i = 0 being trivial. For the induction step, supposing that the induction
hypothesis holds for j − i, consider the index j + 1. It suffices to prove that
ξj+1 �Oj ξj ; it then follows that ξj+1 ≺Oj ξj if j is a progress point. We
have to consider several cases for the shape of ϕj and ϕj+1. Note that by our
assumption that πi = πj = πj+1, ϕj cannot be of the form [a]ψ or 〈a〉ψ.

Case ϕj is of the form α∧ β and ϕj+1 is either α or β. Say ϕj+1 = α.
Then the shadow formula ϕ′j is of the form α′∧β′ where u(α′) = α and u(β′) = β,
and ϕ′j+1 �Oj α′. By assumption no variable ranking higher than Z has a
progress point at j, so we get:

oϕ′j+1
(Z) �Oj+1

oα′(Z)

= oα′∧β′(Z)

= oϕ′j (Z)

Hence ξj+1 �Oj+1
ξj as required.

Case ϕj is of the form α ∨ β. This is similar to the previous case.
Case ϕn is of the form νxα. Then the formula ϕ′j is νxκβ for some κ and

some β with u(β) = α. Then there is some κ0 such that ϕ′j+1 �Oj β[νxκ0β/x].
Since no variable ranking higher than Z has a progress point at j, we get:

oϕ′j+1
(Z) �Oj+1 oβ[νxκ0β/x](Z)

�Oj+1 oνxκβ(Z)

= oϕ′j (Z)

Hence ξj+1 �Oj+1
ξj as required.

Case ϕn is of the form µxα. This is similar to the previous case.

Claim 11. Suppose that i ≤ j < ω are indices such that for all i ≤ k < j, πk
is an initial segment of πk+1. If Z has a progress point k with i ≤ k < j then
ξj ≺Oj ξi, and otherwise ξj = ξi.

Proof of Claim. This is proved by induction on the difference j− i, in the same
manner as Claim 10. The case for j− i = 0 is trivial, and for the induction step
we show that ξj+1 �Oj ξj . The only difference is that we now have to consider
the cases where ϕj is of the form [a]ψ or 〈a〉ψ. We focus on the latter case since
they are treated in the same way: if ϕj = 〈a〉ψ then ϕ′j is of the form 〈a〉ψ′
where u(ψ′) = ψ. Furthermore, since we assumed that πj is an initial segment
of πj+1, the last tile on πj+1 must be an a-successor of the last tile on πj , and
ϕ′j+1 �Oj+1

ψ′. Hence we get:

oϕ′j+1
(Z) �Oj+1

oψ′(Z)

= o〈a〉ψ′(Z)

= oϕ′j (Z)

So ξj+1 �Oj+1
ξj as required.
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Claim 12. Suppose that i ≤ j < ω are indices such that πi = πj and πi is an
initial segment of πk for all i < k < j. If Z has a progress point k with i ≤ k < j
then ξj ≺Oj ξi, and otherwise ξj �Oj ξi.

Proof of Claim. We prove this by induction on the difference j − i. If j − i = 0
then i = j and so ξi = ξj . Now suppose j − i > 0, and suppose the statement
holds for all i′ ≤ j′ with j′ − i′ < j − i. If πi = πk for all i ≤ k ≤ j then the
statement follows directly from Claim 10. Otherwise, it is clear that we can
find indices i′, j′ such that i < i′ ≤ j′ < j, πi′ = πj′ , πi = πi′−1, πj = πj′+1,
Θi′ = Θj′ is a non-trivial a-successor of Θi for some a, and the partial play
(πi, ϕi)...(πj , ϕj) has the shape:

(π, ϕi)...(π, ϕi′−1)(π ·Θ, ϕi′)...(π ·Θ, ϕj′)(π, ϕj′+1)...(π, ϕj)

where π = πi = πi′−1 = πj′+1 = πj , and Θ = Θi′ = Θj′ .
We shall prove the following statements:

1. If Z has a progress point m with i ≤ m < i′ − 1 then ξi′−1 ≺Oi′−1
ξi and

otherwise ξi′−1 �Oi′−1
ξi.

2. If Z has a progress point m with j′ + 1 ≤ m < j then ξj ≺Oj ξj′+1 and
otherwise ξj �Oj ξj′+1

3. If Z has a progress point m with i′ ≤ m < j′ then ξj′ ≺Oj′ ξi′ and
otherwise ξj′ �Oj′ ξi′ .

4. If i′−1 is a progress point for Z then ξi′ ≺Oi′ ξi′−1, and otherwise ξi′ �Oi′
ξi′−1.

5. If ξj′ ≺Oj′ ξi′−1 then ξj′+1 ≺Oj′+1
ξi′−1.

6. If ξj′ �Oj′ ξi′−1 then ξj′+1 �Oj′+1
ξi′−1.

Items (1–3) are immediate from the induction hypothesis.
For the proof of item (4), first suppose that i′ − 1 is a progress point for Z;

then ξi′ ≺Oi′ ξi′−1 by Claim 11 applied to the indices i′ − 1, i′, so that we are
done. On the other hand, if i′ − 1 is not a progress point for Z, we reason as
follows. First note that ϕ′i′−1 must be of the form [a]ψ or 〈a〉ψ for some formula
ψ such that either ϕ′i′ = ψ or ϕ′i′ ≺Oi′ ψ. If ψ = ϕ′i′ then (with © ∈ {[a], 〈a〉}):

ξi′ = oϕ′
i′

(Z) = oψ(Z) = o©ψ(Z) = oϕ′
i′−1

(Z) = ξi′−1.

Finally, if ϕ′i′ ≺Oi′ ψ, then there is some fixpoint variable y such that oϕ′
i′

(y) ≺Oi′
oψ(y) and oϕ′

i′
(z) = oψ(z) for all z ranking higher than y. But then i′ − 1 is a

progress point for y, hence by our choice of Z, the variable Z is higher ranking
than y. Hence oϕ′

i′
(Z) = oψ(Z), and by the same reasoning as above we can

show that oψ(Z) = oϕ′
i′−1

(Z). Hence oϕ′
i′

(Z) = oϕ′
i′−1

(Z) as required.

For the proof of item (5), suppose ξj′ ≺Oj′ ξi′−1. We recall that Θj′+1 =
Θi′−1, so ξi′−1 is an active variable of Θj′+1, and Θj′ is a non-trivial a-successor
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of Θj′+1. By our assumption on Z being the highest ranking fixpoint variable
with any progress points, this means that oϕ′

j′
≺ZOj′ oϕ′i′−1

, hence oϕ′
j′+1
≺yOj′

oϕ′
i′−1

for some y higher ranking or equal to Z. But then y = Z, again by

our assumption that Z is the highest ranking variable with any progress points.
In other words we have oϕ′

j′+1
(Z) ≺Oj′+1

oϕ′
i′−1

(Z), i.e. ξj′+1 ≺Oj′+1
ξi′−1 as

required.
For the proof of item (6) suppose ξj′ = ξi′−1. Then ξj′ is an active variable

of Θi′−1 = Θj′+1. Write ϕ′j′ = 〈a〉ψ′. If all variables in ψ′ are active in Θj′+1

then ϕ′j′+1 �Oj′+1
ψ′, and since Z was the highest ranking variable with any

progress point it follows that

ξj′+1 = oϕ′
j′+1

(Z)

�Oj′+1
oψ′(Z)

= ξj′

= ξi′−1

as required. On the other hand if some variable oψ′(y) of ψ′ is not active in
Θj′+1 = Θi′−1 then either ϕ′j′+1 �Oj′+1

ψ′[τ ] for some substitution τ that is the

identity on all active variables of Θj′+1, including ξi′−1, or oϕ′
j′+1
≺yOj′+1

oϕ′
i′−1

for some fixpoint variable y. Since Z was the highest ranking variable with
any progress point, in either case we get oϕ′

j′+1
(Z) �Oj′+1

oψ′(Z) and therefore

ξj′+1 �Oj′+1
ξi′−1 as before.

We now proceed to finish the proof of the claim using items (1–6). If Z has
a progress point m with i′ − 1 ≤ m < j′ then either m = i′ − 1 or i′ ≤ m < j.
So combining items (3) and (4):

7. If Z has a progress point m with i′− 1 ≤ m < j′, then ξj′ ≺Oj′ ξi′−1, and
otherwise ξj′ �Oj′ ξi′−1.

Combining items (5–7), we immediately obtain:

8. If Z has a progress point m with i′ − 1 ≤ m < j′, then ξj′+1 ≺Oj′+1
ξi′−1,

and otherwise ξj′+1 �Oj′+1
ξi′−1.

The index j′ cannot be a progress point for Z since π′j is not an initial segment
of πj′+1 So if Z has a progress point m with i′ − 1 ≤ m < j, then either
i′ − 1 ≤ m < j′ or j′ + 1 ≤ m < j. So combining items (8) and (2):

9. If Z has a progress point m with i′ − 1 ≤ m < j, then ξj ≺Oj ξi′−1, and
otherwise ξj �Oj ξi′−1.

Finally, if Z has a progress point m with i ≤ m < j, then either i ≤ m < i′ − 1
or i′ − 1 ≤ m < j. So combining items (9) and (1), we have:

10. If Z has a progress point m with i ≤ m < j, then ξj ≺Oj ξi, and otherwise
ξj �Oj ξi.
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But item (10) is the conclusion we aimed to prove, so the proof is finished.

Claim 13. Let N ⊆ ω be a set of indices such that πi = πj for all i ∈ N . Then
N is finite.

Proof of Claim. Say that a play π′ of the mosaic game is visited infinitely many
times if the set N = {i < ω | πi = π′} is infinite. We want to show that no π′

is visited infinitely many times.
It is easy to see that the set of plays π′ of the mosaic game that are visited

infinitely many times is downwards directed with respect to the initial segment
ordering. Assume for contradiction that this set is non-empty then it contains
some π′ that is visited infinitely many times, and for any π′′ that is visited
infinitely many times, π′ is an initial segment of π′′. Hence for some k < ω,
π′ is an initial segment of πm for all m ≥ k. Furthermore, by the pigeonhole
principle there is a formula ψ such that (πm, ϕm) = (π′, ψ) for infinitely many
m < ω. Consequently there must be infinitely many k0, k1, k2, ... < ω for which
(πki , ϕki) = (π′, ψ), π′ is an initial segment of πm for ki ≤ m ≤ ki+1, and Z has
a progress point m with ki ≤ m < ki+1. But then, it follows immediately from
Claim 12 that for each ki, we have ξki+1

≺O ξki , where O is the constraint of
the last sequent on π′. Hence we find an infinite set of distinct ordinal variables
in the same tile, which is impossible since the constraint of a sequent is always
finite.

Claim 14. There is a (unique) infinite σ-guided play π∞ and a sequence S =
(li, ri)i<K of pairs of indices (where K ≤ ω), such that the following conditions
hold for each i < K:

• li < ri, and ri < li+1 (if i+ 1 < K);

• πli = πri v π∞;

• πli v πm for each m with li ≤ m ≤ ri;

• πm v πm+1, for all m with ri ≤ m < li+1 (if i+ 1 < K).

Furthermore, if K < ω then

• πm v πm+1 and πm @ π∞, for all m ≥ rK−1.

We can view the play π∞ as a limit of the partial plays (πi)i<ω in the mosaic
game appearing in the infinite play (πi, ϕi)i<ω in the evaluation game, not in
the sense that πi v π∞ for all i < ω, but for infinitely many i < ω. Intuitively,
Claim 14 says that the infinite play (πi, ϕi)i<ω looks as displayed in Figure 4
below. The dotted arrow shows how the play (πi, ϕi)i<ω traverses the tree of
σ-guided plays, and the shaded branch to the left shows the infinite σ-guided
play π∞.

Proof of Claim. We begin by showing that there is an infinite σ-guided play
π∞ such that every finite initial segment of π∞ is equal to πi for some i < ω.
Consider the set Π of partial σ-guided plays π′ such that every finite initial
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Figure 4: The play π∞ of Claim 14.

segment of π′ is equal to πi for some i < ω. This set is clearly downwards closed
under the initial segment order, so it forms a finitely branching tree in which
π′′ is considered as a child of π′ iff it is a minimal partial play in Π of which
π′ is a proper initial segment. Thus, by König’s lemma it suffices to prove that
this tree is infinite. But clearly, πi belongs to Π for every i < ω. So if the set Π
were finite, by the pigeonhole principle it would have to contain some member
π′ which is equal to πi for infinitely many i < ω, and this contradicts claim 13.

We now show that the play π∞ must satisfy the constraints listed in the
Claim. We define, by induction on the length of an initial segment π′ of π∞, a
set S(π′) of pairs of indices as follows. Suppose that π′ is an initial segment of
π∞ and that S(π′′) has been defined for all proper initial segments π′′ of π′. Let
S′ be the union of all S′(π′′) for π′′ a proper initial segment of π′. We define
S(π′) by a case distinction. If there are no two distinct indices i < j < ω for
which π′ = πi = πj , then we set S(π′) = S′. Otherwise, let l be the smallest
index such that π′ = πl, and let r be the greatest index for which π′ = πr. The
latter must exist by Claim 13. Then l < r. We set S(π) = S′ ∪ {(l, r)}.

With this construction in place, we set S to be the union of all S(π′) where
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π′ is an inital segment of π∞. It is not hard to see that the constraints of the
Claim are met with this definition of S.

We now show that the σ-guided play π∞ is lost by Refuter, which gives a
contradiction. As a consequence of Claim 12, for every i < K we have ξri ≺Ori
ξli if Z has a progress point m with li ≤ m < ri, and ξri = ξli otherwise.
Furthermore, by Claim 11, it follows that for each i with i + 1 < K we have
ξli+1 ≺Oli+1

ξri if Z has a progress point m with ri ≤ m < li+1, and ξli+1 = ξri
otherwise. Also by Claim 11, if K is finite then for each m with m ≥ rK−1, if
m is a progress point for Z then ξm+1 ≺Om+1

ξm, and ξm+1 = ξm otherwise.
Putting these observations together, since Z has infinitely many progress

points by assumption, there must be a strictly increasing sequence of indices
i0, i1, i2, ... such that πij v π∞ and ξij+1 ≺Oij+1

ξij for each j < ω. Hence π∞
is lost by Refuter, contradicting the assumption that σ was a winning strategy
for Refuter. We can now conclude that Falsifier wins every σ′-guided infinite
play.

Theorem 5.28. If ρ is valid then it has a slim proof.

Proof. If ρ is valid, then by Proposition 5.27, Refuter does not have a winning
strategy in the mosaic game for ρ, so that by Proposition 5.25, it is Prover who
has a winning strategy. It then follows by Proposition 5.26 that ρ is provable.

6 From slim proofs to cyclic proofs

With completeness for slim proofs in place, we proceed to show that the exis-
tence of a slim proof for root formula ρ implies that there also exists a (finite)
cyclic proof of that formula. In other words, we want a procedure to trans-
form a given slim proof into a cyclic proof. It will be convenient to split this
transformation into two steps, first introducing an infinitary analogue of cyclic
proofs that will be called infinitely reset proofs, and then showing how such an
infinite proof can be pruned into a finite proof tree which, with suitable back
edges added, forms a cyclic proof.

6.1 Infinitely reset proofs

We first define the notion of an infinitely reset proof.

Definition 6.1. An infinite proof tree Π for root formula ρ is said to be infinitely
reset if, for every infinite branch β on Π, there is some ordinal variable κ that
appears non-active in every sequent in some final segment of β, and is reset
infinitely many times on β.

We want to show that a slim proof can be transformed into an infinitely reset
proof containing only finitely many sequents. In order to do that, we have to
tame the growth of constraints in the proof tree using the constraint weakening
rule, and inserting instances of the reset rule when possible. In order for this to
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work we have to keep track of which ordinal variables we want to keep in order
to possibly be reset later, and which ones we want to simply throw away. The
following definition captures this distinction:

Definition 6.2. Let O : Γ be a sequent and κ an ordinal variable in O. Then κ
is said to be redundant if it is non-active and all of its descendants are non-active.

We are now ready to state and prove the result.

Proposition 6.3. If ρ has a slim proof then it has an infinitely reset proof in
which only finitely many distinct sequents appear.

Proof. Let Π be a slim proof of ρ. We construct an infinite proof tree Π′ together
with a map f : Π′ → Π as the union of finite approximants Π′i and fi, for i < ω,
defined as follows. First, we set Π′0 to consist of a single vertex, labelled with
the end sequent of Π, and we let f0 map this single vertex to the root of Π.
Now suppose the approximants Π′i and fi have been defined, so that for every
vertex v of Π′i labelled Ov : Γv, the label of fi(v) is of the form Ofi(v) : Γfi(v)

where Γv = Γfi(v) and Ov = Ofi(v) \V for some set V of non-active variables of
Ofi(v). We construct Π′i+1 and fi+1 by doing the following for each non-axiom
leaf v of Π′i:

• If the constraint of v contains redundant ordinal variables, make v the
conclusion to an application of left weakening that removes all these re-
dundant variables and let fi+1 map the new premiss to fi(v).

• If the constraint of v contains no redundant ordinal variables but there
is an instance of the reset rule with conclusion matching v, make v the
conclusion to such an instance of reset and let fi+1 map the new premiss
to fi(v).

• If neither of the two previous cases apply, then make v the conclusion of
the same rule instance as fi(v) and let fi+1 map each new premiss w to
the corresponding premiss of fi(v).

Note that the last case of this construction can be carried out thanks to the
assumption that Π was a slim proof. In particular, we are relying here on the
restriction on the cut rule, µ(κ) or ∃, that all ordinal variables occurring free in
the cut formula or minor formula of the rule application are active variables in
the conclusion. For example, suppose fi(v) is the conclusion to an instance of
the ∃-rule of the form:

O(λ < κ) : Γ, ϕ[λ/ξ]

O(λ < κ) : Γ,∃ξ < κ.ϕ

By assumption the constraint of v is of the form O\V for some set of non-active
variables V of O. The constraint on applications of the ∃-rule in slim proofs
ensures that λ is active in Γv and thus cannot belong to V . Hence λ belongs
to O \ V and we can safely make v the conclusion to the corresponding rule
instance:

(O \ V )(λ < κ) : Γ, ϕ[λ/ξ]

(O \ V )(λ < κ) : Γ,∃ξ < κ.ϕ
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We claim that the limit Π′ obtained from this construction is an infinitely reset
proof.

Claim 15. Let O : Γ be a sequent such that O contains at most n active
variables, and suppose O contains a chain κ0, ..., κ2n+1 of 2n+2 different ordinal
variables such that κ2n+1 <O ... <O κ0. Then there is an instance of the reset
rule with conclusion O : Γ in which one of the variables κ0, ..., κ2n+1 is reset.

Proof of claim 15. Since the length of the chain is 2n + 2 it contains a chain
of n + 2 different non-active variables. Clearly, as these variables are all part
of a chain, at least n+ 1 of these non-active variables have a non-empty set of
children. Finally, as the sets of children of two different variables are disjoint,
at most n of these variables can have an active child. So the chain must contain
at least one non-active variable κ with a non-empty set of children, all of which
are non-active. This variable can be reset.

Claim 16. Let β = Γ0Γ1Γ2... be an infinite branch of Π′ with corresponding
sequence of constraints O0O1O2... and let f [β] be the corresponding branch of
Π. If f [β] has an infinite descending chain κ0, κ1, κ2... of ordinal variables, then
there is an index k < ω and variable λ in Ok such that:

1. λ belongs to Oi for all i ≥ k, and

2. λ is reset infinitely many times on β.

Proof of claim 16. We write f [β] = Γf0Γf1Γf2 ... and let Of0O
f
1O

f
2 ... denote the

corresponding sequence of constraints. We assume that κ0 occurs in Of0 since
otherwise we can just drop the prefix of the sequence before the first occurrence
of κ0 and re-index. For each i < ω we denote by g(i) the highest index such

that κg(i) appears in Ofi . Note that κg(i) must be active in Γfi , since there must

be some descendant Γfj with j > i that is the conclusion to either a ν-rule or

∀-rule in which κg(i) occurs in the principal formula. So κg(i) is active in Γfj and

hence, because Π is a slim proof, in Γfi . Note that g is monotone in the sense
that i ≤ j implies g(i) ≤ g(j), since there are no applications of left weakening
in Π.

For each i < ω we denote by Si the set of variables λ in Oi that fulfil the
following two properties.

Stability: No proper ancestor of λ is reset in any constraint Oj with j ≥ i.

Ancestry: κg(i) <Oi λ.

We note that Si is non-empty for all sufficiently large i, since eventually κg(i)
must have at least one proper ancestor, and the <Oi-largest ancestor of κg(i)
must satisfy Stability since it has no proper ancestors. Note that if λ ∈ Si then
the Ancestor condition entails that κg(j) <Oj λ for all j ≥ i such that λ belongs
to Oj . Together with the Stability condition this entails that λ ∈ Si belongs
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to Oj for all j ≥ i, since an ancestor of κg(j) is never redundant and hence can
only be removed by resetting its parent.

Now pick an index i0 for which Si0 is non-empty, and pick λ0 ∈ Si0 . Since,
by Stability, λ0 belongs to Oj for all j ≥ i0, we are done if λ0 is reset infinitely
many times. Otherwise, there is some k > i0 such that λ0 is never reset in any
constraint Oj for j ≥ k. Let i1 be the first index after k such that λ0 has a
child in Oi1 which is an ancestor of κg(i1); such an index obviously exists since
κ0κ1κ2... is an infinite descending chain. We let λ1 denote this child of λ0 in Oi1 .
Since λ0 is never reset after i1, λ1 satisfies the Stability and Ancestor conditions
with respect to the index i1. Now repeat the same argument; eventually, we
must find a variable that belongs to Oj for all sufficiently large j and is reset
infinitely many times. For, suppose not; then, let m be the maximum number
of active variables that can appear in any constraint in Π′. By repeating the
previous argument sufficiently many times we eventually find a chain of 2m+ 2
variables λ2m+1, ..., λ0 such that λ2m+1 <Oi2m+1

· · · <Oi2m+1
λ0, none of which

can be reset. This contradicts Claim 15, so the proof is done.

It follows immediately from Claim 16 that the proof tree Π′ has the desired
property, that on every infinite branch there is some variable that eventually
appears in every constraint and is reset infinitely many times. Furthermore,
whenever the number of non-active variables in the constraint exceeds a certain
bound, then since the number of active variables is bounded either there are
redundant variables (that are immediately removed by left weakening) or there
is a sufficiently long chain of variables so that the reset rule can be applied (by
Claim 15). It follows that the proof tree Π′ has only finitely many sequents up
to renaming of ordinal variables. So by suitably renaming ordinal variables, we
can produce an infinitely reset proof Π′′ in which only finitely many sequents
appear.

6.2 Completeness of cyclic proofs

We are now ready for the final step of the completeness proof, showing that any
infinitely reset proof containing finitely many sequents can be folded to a cyclic
proof. We recall that a cyclic proof tree is a finite proof tree together with a
back edge for each non-axiom leaf l, the target of which is called the companion
of the leaf, such that the label of each non-axiom leaf l is identical with the label
of its companion. Furthermore, such a cyclic proof tree is a valid cyclic proof if
for every non-axiom leaf l there is some ordinal variable κl such that κl belongs
to the constraint of every vertex on the path from the companion of l to l, and
is reset at least once on this path.

Proposition 6.4. Let Π be an infinite reset proof for the formula ρ, and assume
that only finitely many distinct sequents appear in Π. Then ρ has a cyclic proof.

Proof. Let Π and ρ be as in the formulation of the Proposition.
Consider an arbitrary infinite branch β of Π. Since Π is an infinite reset

proof, we may associate an ordinal variable κβ with β which appears non-active
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in every sequent in some final segment of β and is reset infinitely often in β. But
then by the pigeonhole principle it follows from the additional assumption on Π
that β contains two nodes, cβ and lβ , labelled with the same sequent, and such
that lβ is a (proper) descendant of cβ , the variable κβ is a non-active element
of the constraint of every sequent on the path from cβ to lβ , and κβ is reset at
least once on this path.

Now we prune the underlying tree of Π as follows. Let L be the set of first
repeats of Π, that is, those nodes of the form lβ for some infinite branch β that
do not have a proper ancestor of the form lα for some other infinite branch α.
Define ΠL as the proof tree we obtain by pruning all descendants of nodes in L;
in other words, the leaves of ΠL are either axiomatic or elements of L.

The key observation is that ΠL is finite. To see this, suppose otherwise, then
by König’s Lemma ΠL contains an infinite branch β. By construction β must
be an infinite branch of Π as well, so that we may consider the node lβ . Since
lβ belongs to ΠL, it cannot have a proper ancestor in L. It follows that lβ itself
must be a first repeat and thus belongs to L. But then ΠL cannot contain any
descendant of lβ , which contradicts the assumption that β is an infinite branch
in ΠL.

We claim that in fact ΠL is a cyclic proof for ρ. For this purpose we need to
define a companion map on ΠL, so consider an arbitrary non-axiomatic leaf l of
ΠL. By construction we may fix some infinite branch β of Π such that l = lβ .
Now define the companion of l to be the node cβ . It is then straightforward to
verify that with this companion map, ΠL is indeed a cyclic proof for ρ.

Putting our results together, we now obtain

Proposition 6.5. If a plain formula ρ is valid, then it has a cyclic proof.

Proof. Let ρ be valid, then it has a slim proof by Theorem 5.28. As a direct
consequence of Proposition 6.3 and Proposition 6.4 we may conclude that ρ has
a cyclic proof as well.

Finally, Theorem 3.10 now follows immediately from Proposition 4.3 and
Proposition 6.5.

7 Conclusion

We have presented a sound and complete cyclic proof system for the two-way
µ-calculus. The defining feature of the system is the use of ordinal variables
for detecting successful branches and ordinal quantifiers for handling the effect
of two-way traces. The sequent calculus builds on two strong and successful
formalisms for modal µ-calculus: explicit ordinal approximants [17, 4, 16] and
name signatures [11, 18].

The proof system we introduced is suitable for effective proof search, as our
completeness proof shows that cuts can be restricted to a small set of formulas.
However, our completeness proof relies on saturation techniques that make it
difficult to calculate a bound on the size of proofs for valid formulas. We leave
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open whether the proof system can be used to obtain an optimal decision proce-
dure for the two-way µ-calculus, matching the exponential time bound obtained
by Vardi [21].

One can view the move from modal µ-calculus to two-way µ-calculus as a
first step towards finitary proof systems for guarded fragments of first-order
fixed point logic [8, 20, 3]. The cyclic calculus of the present paper is subsumed
in the cyclic proof system for the first-order µ-calculus of [1]. Looking forward,
we thus hope that insights from the present work can yield complete systems
for larger (guarded) fragments of the first-order µ-calculus.

There is an apparent connection between two-way µ-calculus and model-
checking infinite-state processes. It is well known that the two-way µ-calculus
lacks the finite model property, although any satisfiable formula has a model
that can be represented as a regular tree [21]. But even a regular tree model
is in general infinite-state from the perspective of the two-way µ-calculus, as
the appropriate notion of bisimulation will distinguish infinitely many states,
all satisfying different formulas in the language. A calculus for model-checking
context-free infinite-state processes was proposed by Schöpp and Simpson [15]
which is similar to our own in the way it builds on [4]. As an example of an
infinite-state process, Schöpp and Simpson consider a context-free system that
represents a transition system with two actions converse to each other.

To date, there are no known complete Hilbert-style axiomatisation of the
two-way µ-calculus. Indeed, the only sound and complete proof systems are the
ω-branching well-founded proofs of [2] and the cyclic proofs of this article. An
obvious question is whether either system sheds light on a Hilbert axiomatisa-
tion. One can also ask how the two proof systems are related. Aside from the
difference in language (ordinals are external to the logical language in [2]), the
crucial use of cut in the present work is a non-trivial hurdle in any comparison.
As noted, we leave open whether our calculi are complete in the absence of cut.
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