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Abstract

In ontology-based data access, multiple data sources are inte-
grated using an ontology and mappings. In practice, this is
often achieved by a bootstrapping process, that is, the on-
tology and mappings are first designed to support only the
most important queries over the sources and then gradually
extended to enable additional queries. In this paper, we study
two reasoning problems that support such an approach. The
expressibility problem asks whether a given source query qs
is expressible as a target query (that is, over the ontology’s
vocabulary) and the verification problem asks, additionally
given a candidate target query qt, whether qt expresses qs.
We consider (U)CQs as source and target queries and GAV
mappings, showing that both problems are Πp

2-complete in
DL-Lite, CONEXPTIME-complete between EL and ELHI
when source queries are rooted, and 2EXPTIME-complete for
unrestricted source queries.

Introduction
Ontology-based data access (OBDA) (Poggi et al. 2008) is
an instantiation of the classical data integration scenario, that
is, a set of data sources is translated into a unifying global
schema by means of mappings. The distinguishing feature
of OBDA is that the global schema is formulated in terms
of an ontology which provides a rich domain model and can
be used to derive additional query answers via logical rea-
soning. When data sources are numerous such as in large
enterprises, data integration is often a considerable invest-
ment. OBDA is no exception since the construction of both
the mappings and the ontology is non-trivial and labour in-
tensive.

In practice, OBDA is thus often approached in an in-
cremental manner (Trisolini, Lenzerini, and Nardi 1999;
Kharlamov et al. 2015; Sequeda and Miranker 2017). One
starts with a small set of important source queries (typi-
cally hand crafted by experts from the enterprise’s IT de-
partment) and builds mappings for the involved sources and
an initial ontology that support these queries, manually or
with the help of extraction tools (Jiménez-Ruiz et al. 2015;
Pinkel et al. 2018). The outcome of this first step is then eval-
uated and, when considered successful, ontology and map-
pings are extended to support additional queries. This pro-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cess may proceed for several rounds and in fact forever since
new data sources and queries tend to appear as the enterprise
develops and existing data sources or the ontology need to
be updated (Lembo et al. 2017).

The aim of this paper is to study two reasoning tasks
that support such an incremental approach to OBDA. The
expressibility problem asks whether a given source query
qs is expressible as a target query qt over the global
schema defined by the ontology. Possible reasons for non-
expressibility include that the mappings do not transport all
data required for answering qs to the global schema and that
the ontology ‘blurs’ the distinction between different rela-
tions from the sources, examples are given in the paper. If qs
is not expressible, one might thus decide to add more map-
pings or to rework the ontology. The verification problem
asks, additionally given a candidate target query qt, whether
qt expresses qs. This is useful for example when a complex
qt has been manually constructed and when the ontology,
mappings, or source schemas have been updated, with an
unclear impact on qt. The same problems have been con-
sidered in the context of open data publishing, there called
finding and recognition of s-to-t rewritings (Cima 2017).

We consider UCQs (and sometimes CQs) both for source
and target queries, global as view (GAV) mappings, and on-
tologies that are formulated in DL-Lite or in a description
logic (DL) between EL and ELHI, which are all very com-
mon choices in OBDA. It follows from results in (Nash,
Segoufin, and Vianu 2010; Afrati 2011) that, even with-
out ontologies, additional source UCQs become expressible
when full first-order logic (FO) is admitted for the target
query rather than only UCQs. In OBDA, however, going be-
yond UCQs quickly results in undecidability of query an-
swering (Baader et al. 2017) and thus we stick with UCQs.

The expressibility problem in OBDA is closely related
to the problem of query expressibility over views, which
has been intensively studied in database theory, see for ex-
ample (Levy et al. 1995; Duschka and Genesereth 1997;
Calvanese et al. 2002; Nash, Segoufin, and Vianu 2010;
Afrati 2011) and references therein. The problem has oc-
casionally also been considered in a DL context (Calvanese,
De Giacomo, and Lenzerini 2000; Haase and Motik 2005;
Beeri, Levy, and Rousset 1997; Calvanese et al. 2012).
These papers, however, study setups different from the one
we consider, both regarding the rôle of the ontology and the



description logics used.
In many classical cases of query expressibility over views,

informally stated, qs is expressible over a set of mappings M
(representing views) if and only if the UCQ M−(M(qs))
is contained in qs where M(qs) is the UCQ obtained from
qs by applying the mappings and M−(M(qs)) is obtained
from M(qs) by applying the mappings backwards (Nash,
Segoufin, and Vianu 2010; Afrati 2011). Our starting point
for proving decidability and upper complexity bounds for
expressibility in OBDA is the observation that we need to
check whether M−(qr) is contained in qs where qr is a (po-
tentially infinitary) UCQ-rewriting of the UCQ M(qs) un-
der the ontology; note that, here, we mean rewriting of an
ontology-mediated query into a source query in the classi-
cal sense of ontology-mediated querying, see for example
(Bienvenu et al. 2016). Verification can be characterized in
a very similar way. These characterizations also show that
expressibility can be reduced to verification in polynomial
time and that if qs is expressible, then it is expressed by the
polynomial size UCQ M(qs).

Our main results are that within the setup described
above, expressibility and verification are Πp

2-complete in
DL-LiteRhorn and in many other dialects of DL-Lite, CO-
NEXPTIME-complete in DLs between EL and ELHI when
the source UCQ is rooted (that is, every variable is reachable
from an answer variable in the query graph of every CQ),
and 2EXPTIME-complete in the unrestricted case. There are
some surprises here. First, the Πp

2 lower bound already ap-
plies when the ontology is empty and the source query is a
CQ which means that, in the database theory setting, it is Πp

2-
hard to decide the fundamental problem whether a source
CQ is expressible as a (U)CQ over a set of UCQ views. For
this problem, an NP upper bound was claimed without proof
in (Levy et al. 1995). Our results show that the problem is
actually Πp

2-complete. A second surprise is that 2EXPTIME-
respectively CONEXPTIME-hardness applies already in the
case that the ontology is formulated in EL (and when queries
are UCQs). We are not aware of any other reasoning prob-
lem for EL that has such a high complexity whereas there
are several such problems known for ELI, that is, EL ex-
tended with inverse roles (Bienvenu et al. 2016). There is a
clear explanation, though: the mappings make it possible to
introduce just enough inverse roles in the backwards trans-
lation M− mentioned above so that hardness proofs can be
made work.

Detailed proofs are deferred to the appendix.

Preliminaries
We use a mix of standard DL notation (Baader et al. 2017)
and standard notation from database theory.

Databases and Queries. A schema S is a set of relation
names with associated arities. An S-database D is a set of
facts R(a1, . . . , an) where R ∈ S is a relation name of arity
n and a1, . . . , an are constants. We use adom(D) to denote
the set of constants that occur in D.

A conjunctive query (CQ) q(x) over schema S takes the
form ∃yϕ(x,y), where x are the answer variables, y are
the quantified variables, and ϕ is a conjunction of relational

atoms R(z1, . . . , zn) and equality atoms z1 = z2 where
R ∈ S is of arity n and z1, . . . , zn are variables from x ∪ y.
Contrary to the usual setup and to avoid dealing with special
cases in some technical constructions, we do not require that
all variables in x actually occur in ϕ(x,y). We sometimes
confuse q with the set of atoms in ϕ, writing for example
R(x, y, z) ∈ q. We use var(q) to denote x ∪ y. The arity of
a CQ is the number of variables in x and q is Boolean if it
has arity zero. A homomorphism from q to a database D is
a function h : var(q) → adom(D) such that R(h(x)) ∈ D
for every relational atom R(x) ∈ q and h(x) = h(y) for
every relational atom x = y ∈ q. Note that h needs to be de-
fined also for answer variables that do not occur in ϕ(x,y).
A tuple a ∈ adom(D) is an answer to q on D if there is a
homomorphism h from q to D with h(x) = a. A union of
conjunctive queries (UCQ) is a disjunction of CQs that all
have the same answer variables. Answers to UCQs are de-
fined in the expected way. We use ansq(D) to denote the set
of all answers to UCQ q on database D.

Let q1(x1), q2(x2) be UCQs of the same arity and over the
same schema S. We say that q1 is contained in q2, denoted
q1 ⊆S q2, if for every S-databaseD, ansq1(D) ⊆ ansq2(D).
It is well-known that, when q1, q2 are CQs, then q1 ⊆S q2 iff
there is a homomorphism from q2 to q1, that is, a function
h : var(q2) → var(q1) such that R(h(x)) ∈ q1 for every
relational atom R(x) ∈ q2, (h(x), h(y)) is in the equiva-
lence relation generated by the equality atoms in q1 for ev-
ery x = y ∈ q2, and h(x2) = x1. We indicate the existence
of such a homomorphism with q2 → q1. When qi is a UCQ
with disjuncts qi,1, . . . , qi,ki , i ∈ {1, 2}, then q1 ⊆S q2 iff
for every q1,i, there is a q2,j with q2,j → q1,i.

We shall frequently view CQs as databases, for which we
merely need to read variables as constants of the same name
and drop equality atoms. Conversely, we shall also view a tu-
ple (D,a) withD a database and a = a1 · · · an ∈ adom(D)
as an n-ary CQ; note that repeated elements are admit-
ted in a. We do this by reserving n fresh answer variables
x1, . . . , xn, viewing D as a CQ by reading all constants (in-
cluding those in a) as quantified variables, and adding the
equality atom xi = ai for 1 ≤ i ≤ n.

Ontology-Based Data Access. Let NC and NR be count-
ably infinite set of concept names and role names. An ELI-
concept is formed according to the syntax rule

C,D ::= > | A | C uD | ∃r.C | ∃r−.C
where A ranges over concept name and r over role names.
An expression r− is called an inverse role and a role is ei-
ther a role name or an inverse role. As usual, we let (r−)−

denote r. An ELHI-ontology is a finite set of concept in-
clusions (CIs) C v D, C,D ELI-concepts, and role inclu-
sions r v s and r v s−. The semantics is defined in terms
of interpretation I = (∆I , ·I) as usual. An EL-concept is
an ELI-concept that does not use the constructor ∃r−.C.
An EL-ontology is an ELHI-ontology that uses only EL-
concepts and contains no role inclusions. A basic concept
is a concept name or of one of the forms >, ⊥, ∃r.>, and
∃r−.>. A DL-LiteRhorn-ontology is a finite set of statements
of form
B1 u · · · uBn v B r v s r v s− r1 u · · · u rn v ⊥



where B1, . . . , Bn, B range over basic concepts and
r, s, r1, . . . , rn range over role names.

A DL schema is a schema that uses only unary and binary
relation names, which we identify with NC and NR respec-
tively. An S-ABox is a database over DL schema S. An in-
terpretation I is a model of an ABoxA if A(a) ∈ A implies
a ∈ AI and r(a, b) ∈ A implies (a, b) ∈ rI . In contrast
to standard DL terminology, we speak of constants and facts
also in the context of ABoxes, instead of individuals and as-
sertions.

An ontology-mediated query (OMQ) is a tuple Q =
(O,S, q) withO an ontology, S a DL schema, and q a query
such as a CQ. LetA be an S-ABox. A tuple a ∈ adom(A) is
a certain answer to Q on A if a ∈ ansq(I) for every model
I of A (viewed as a potentially infinite S-database). We use
certQ(A) to denote the set of all certain answers to Q on A
and sometimes writeA,O |= q(a) when a ∈ certQ(A). For
OMQs Q1 = (O1,Σ, q1) and Q2 = (O2,Σ, q2) of the same
arity, we say that Q1 is contained in Q2, denoted Q1 ⊆ Q2,
if for every Σ-ABox A, certQ1

(A) ⊆ certQ2
(A). Contain-

ment between an OMQ and a UCQ are defined in the ex-
pected way, and so is the converse containment.

A global as view (GAV) mapping over a schema S takes
the form ϕ(x,y) → ψ(x) where ϕ(x,y) is a conjunction
of relational atoms over S and ψ(x) is of the form A(x),
r(x, y), or r(x, x) withA a concept name and r a role name.
We call ϕ(x,y) the body of the mapping and ψ(x) its head.
Every variable that occurs in the head must also occur in the
body. Let M be a set of GAV mappings over a schema S. For
every S-database D, the mappings in M produce an ABox
M(D), defined as follows:

{R(a) | D |= ϕ(a,b) and ϕ(x,y)→ R(x) ∈M}.

This ABox can be physically materialized or left virtual; we
do not make any assumptions regarding this issue.

An OBDA specification is a triple S = (O,M,S) where
S is the source schema, M a finite set of mappings over S,
and O an ontology.1 We use sch(M) to denote the schema
that consists of all relation names that occur in the heads
of mappings in M. Informally, S is addressing source data
in schema S, translated into an ABox in schema sch(M)
in terms of the mappings from M and then evaluated under
the ontology O. Note that O can use the relation names in
sch(M) as well as additional concept and role names, and
so can queries that are posed against the ABox.

We use [L,M] to denote the set of all OBDA specifi-
cations (O,M,S) where O is formulated in the ontology
language L and all mappings in M are formulated in the
mapping languageM and call [L,M] an OBDA language.
An example of an OBDA language is [ELHI,GAV]. In this
paper, we shall concentrate on GAV mappings. While other
types of mappings such as LAV and GLAV are also inter-
esting (Poggi et al. 2008; Cima 2017), they are outside the
scope of this paper.

1For readability, we consider a single data source, only. Multi-
ple source databases can be represented as a single one by assuming
that their schemas are disjoint and taking the union.

Definition 1. LetQs andQt be query languages and [L,M]
an OBDA language.

1. TheQs-to-Qt verification problem in [L,M] is to decide,
given an OBDA specification S = (O,M,S) ∈ [L,M],
a source query qs ∈ Qs, and a target query qt ∈ Qt
of the same arity, whether qt is a realization of qs in S,
that is, whether ansqs(D) = certQ(M(D)) for all S-
databases D, where Q = (O, sch(M), qt).

2. The Qs-to-Qt expressibility problem in [L,M] is to de-
cide, given an OBDA specification S = (O,M,S) ∈
[L,M] and a source query qs ∈ Qs, whether there is
a realization qt of qs in Qt. We then say that qs is Qt-
expressible in S.
Note that an alternative definition is obtained by quanti-

fying only over those S-databases D such that D ∪ O is
satisfiable. This does not make a difference for most of the
setups studied in this paper since the involved DLs cannot
express inconsistency.
Example 2. Assume that S contains a binary relation Man
with Man(m, d) meaning that department d is managed by
manager m and a ternary relation Emp(e, d, o) meaning that
employee e works for department d in office o. Let M con-
tain the GAV mappings

Man(x, z) ∧ Emp(y, z, u) → manages(x, y)

Emp(x, y, z) → Employee(x)

Then the source query qs(x) = ∃yMan(x, y) is not ex-
pressible because the mappings do not provide sufficient
data from the source. It trivially becomes expressible as
qt(x) = Manager(x) when we add the mapping

Man(x, y)→ Manager(x).

Next, we further add the following EL-ontology O:

Manager v Employee

Manager v ∃manages.Secretary

Then the source query qs(x) = ∃y∃z Emp(x, y, z), which
formerly was expressible as qt(x) = Employee(x), is no
longer expressible due to the first CI in O. Informally, all
the required data is there, but it is mixed with other data and
we have no way to separate. The source query qs(x, y) =
∃z∃uMan(x, z) ∧ Emp(y, z, u), however, is expressible as
manages(x, y) despite the second CI in O, intuitively be-
cause the additional data mixed into manages by that CI al-
ways involves an anonymous constant introduced through
the existential quantifier and is thus never returned as a cer-
tain answer.

The size of any syntactic object X such as a UCQ or an
ontology, denoted |X|, is the number of symbols needed to
write it, with names of concepts, roles, variables, etc. count-
ing as one.

Characterizations
We characterize when a UCQ qt over sch(M) is a realiza-
tion of a UCQ qs over the source schema S and then lift this
characterization to the expressibility of qs. This serves as a



basis for deciding the expressibility and verification prob-
lems later on. The characterization applies the mappings
from M forwards and backwards, as also done in query
rewriting under views (Nash, Segoufin, and Vianu 2010;
Afrati 2011), and suitably mixes in UCQ-rewritings of cer-
tain emerging OMQs.

Let S = (O,M,S) be an OBDA specification and Q =
(O, sch(M), q) an OMQ. A rewriting of Q is a query qr
over sch(M) of the same arity as q such that for all sch(M)-
ABoxes A, ansqr (A) = certQ(A). We speak of a UCQ
rewriting if qr is a UCQ, of an infinitary UCQ rewriting
if qr is a potentially infinite UCQ, and so on. Note that
there always exists a canonical infinitary UCQ rewriting that
is obtained by taking all sch(M)-ABoxes A and answers
a ∈ certQ(A) and including (A,a) viewed as a CQ as a dis-
junct. This even holds when O is formulated in FO without
equality. In fact, this follows from the definition of rewrit-
ings and the fact that OMQs with O formulated in FO with-
out equality are preserved under homomorphisms (Bienvenu
et al. 2014).

Let S = (O,M,S) be an OBDA specification and A an
ABox that uses only concept and role names from sch(M).
We say that a mapping ϕ(x,y) → ψ(x) from M is suit-
able for a fact α ∈ A if ψ(x) and α are unifiable. We write
M−(A) to denote the set of S-databases obtained from A
as follows: for every fact α ∈ A, choose a suitable map-
ping ϕ(x,y) → ψ(x) from M and include R(σ(z)) in
M−(A) whenever R(z) is an atom in ϕ(x,y) and where
σ is the most general unifier of ψ(x) and α, extended to
replace every variable from y with a fresh constant. For ex-
ample, for a fact r(a, a) ∈ A we can choose a mapping
R(x, y, z) → r(x, y) and include R(a, a, b) in M−(A),
where b is fresh. Both M and M− lift to sets of databases
and ABoxes as expected, that is, if S is a set of S-databases,
then M(S) = {M(D) | D ∈ S} and if S is a set of ABoxes
over sch(M), then M−(S) =

⋃
A∈SM

−(A).

In what follows, we shall often apply M to a CQ q(x)
viewed as a database, and view the result (which formally is
a database) again as a CQ. In this case, the answer variables
are again x and the equality atoms from q(x) are readded
to M(q). The same applies to UCQs and sets of databases,
and to M−(q) (where we also preserve answer variables and
readd equality atoms). Note that M−(q) gives a UCQ even
when q was a CQ.

Example 3. Consider the CQ q(x, y, z) = ∃u r(x, y) ∧
s(x, z) ∧ s(z, u) ∧ x = y and let M consist of the single
mapping r(x, y)→ r(x, y), that is, the role name r is simply
copied and the role name s is dropped. Then M(q) viewed
as a CQ is p(x, y, z) = r(x, y)∧x = y. Note that the answer
variable z does not occur in an atom.

The following fundamental lemma describes the (non)-
effect of applying M and M− on query containment. It is
explicit or implicit in many papers concerned with query
rewriting under views or with query determinacy, see for ex-
ample (Nash, Segoufin, and Vianu 2010; Afrati 2011).

Lemma 4. Let M be a set of GAV mappings, q, q1 and q2
UCQs over S and r, r1 and r2 UCQs over sch(M). Then:

1. If q1 ⊆S q2, then M(q1) ⊆sch(M) M(q2).

2. If r1 ⊆sch(M) r2, then M−(r1) ⊆S M−(r2).

3. q ⊆S M−(r) iff M(q) ⊆sch(M) r.

The next theorem characterizes realizations in terms of
UCQ rewritings and M−. It can thus serve as a basis for
deciding the verification problem.

Theorem 5. Let S = (O,M,S) be an OBDA specifica-
tion from (FO(=),GAV), qs a UCQ over S, qt a UCQ over
sch(M), and qr an infinitary UCQ rewriting of the OMQ
Q = (O, sch(M), qt). Then qt is a realization of qs iff
qs ≡S M−(qr).

Proof. “if”. Assume that qs ≡S M−(qr). We have to show
that qt is a realization of qs. Since qr is a rewriting of Q,
it suffices to prove that ansqs(D) = ansqr (M(D)) for all
S-databases D.

For “⊆”, assume that a ∈ ansqs(D). Let p be (D,a)
viewed as a CQ. From a ∈ ansqs(D), we obtain p ⊆ qs,
and qs ⊆S M−(qr) yields p ⊆S M−(qr). With Point 3 of
Lemma 4, it follows that M(p) ⊆S qr, which by construc-
tion of p implies a ∈ ansqr (M(D)).

For “⊇”, assume that a ∈ ansqr (M(D)). Let p be
(M(D),a) viewed as a UCQ. Then, p ⊆sch(M) qr and
Point 3 of Lemma 4 yields p′ ⊆S M−(qr) where p′ is (D,a)
viewed as a CQ. Together with M−(qr) ⊆S qs, we obtain
p′ ⊆S qs, which implies that a ∈ ansqs(D).

For the “only if” direction, assume that qt is a realization
of qs. We have to show that qs ≡S M−(qr). Thus, let D
be an S-database and a a tuple from adom(D) whose length
matches the arity of qs. Further, let p be (D,a) viewed as
a database. Since qt is a realization of qs and qr a rewriting
of the OMQ Q, a ∈ ansqs(D) iff a ∈ ansqr (M(D)). The
latter is the case iff M(p) ⊆sch(M) qr which by Point 3 of
Lemma 4 holds iff p ⊆S M−(qr). This in turn is the case iff
a ∈ ansM−(qr)(D). o

The next theorem characterizes the expressibility of source
queries in an OBDA specification. It has several interesting
consequences. First, it implies that the UCQ M(qs) is a re-
alization of a UCQ qs over S if there is any such realization.
This is well known in the case without an ontology (Nash,
Segoufin, and Vianu 2010; Afrati 2011) and is implicit in
(Cima 2017) for a rather special case of OBDA. Second, the
theorem provides a polynomial time reduction of express-
ibility to verification: qs is expressible in S iff M(qs) is a
realization of qs in S. And third, it shows that if qs is a CQ,
then CQ-expressibility coincides with UCQ-expressibility.
Thus, all lower bounds for CQ-to-CQ expressibility also ap-
ply to (U)CQ-to-UCQ expressibility and all upper bounds
for UCQ-to-UCQ verification and expressibility also apply
to the corresponding CQ-to-(U)CQ case.

Theorem 6. Let S = (O,M,S) be an OBDA specifica-
tion from (FO(=),GAV), qs a UCQ over S, and qr an infini-
tary UCQ rewriting of the OMQ Q = (O, sch(M),M(qs)).
Then qs is UCQ-expressible in S iff M−(qr) ⊆S qs. More-
over, if this is the case then M(qs) is a realization of qs in S.



Proof. We first observe that

(a) if M−(qr) ⊆S qs, then M(qs) is a realization of qs in S.

This actually follows from Theorem 5 because qs ⊆S

M−(qr) always holds. In fact, since M(qs) is the actual
query in Q and since qr is a rewriting of Q, we have
M(qs) ⊆sch(M) qr; applying Point 3 of Lemma 4 then yields
qs ⊆S M−(qr).

Note that (a) establishes the “if” part of Theorem 6. In
view of Theorem 5 and by (a), we can prove both the “only
if” and the “Moreover” part by showing that if there is any
realization qt of qs in S , then M(qs) is a realization of qs.

Thus assume that qt is such a realization and let Q′ be the
OMQ (O, sch(M), qt) and q′r a UCQ-rewriting of Q′. We
aim to show that

(b) M−(qr) ⊆S M−(q′r).

This suffices since Theorem 5 yields M−(q′r) ⊆S qs and
composing (b) with this containment gives M−(qr) ⊆S qs
that yields the desired result because of (a).

To establish (b), by Point 2 of Lemma 4 it suffices to
show qr ⊆sch(M) q′r. From Theorem 5, we get qs ⊆S

M−(q′r). Point 3 of Lemma 4 gives M(qs) ⊆sch(M)

q′r. By the semantics of certain answers, this implies
(O, sch(M),M(qs)) ⊆sch(M) (O, sch(M), q′r). Since the
former OMQ is just Q and qr is a rewriting of Q, we
get qr ⊆sch(M) (O, sch(M), q′r). It thus remains to show
(O, sch(M), q′r) ⊆ q′r, which is exactly the statement of
Lemma 24 in the appendix. o

The following corollary of Theorem 6 shows that while
making the ontology logically stronger might make some
source queries inexpressible (see Example 3), it never re-
sults in additional such queries becoming expressible.

Corollary 7. Let Si = (Oi,M,S) i ∈ {1, 2}, be OBDA
specifications from [FO,GAV] with O1 |= O2, Q ∈
{CQ,UCQ} and qs from Q. Then Q-expressibility of qs in
S1 implies Q-expressibility of qs in S2.

Proof. Assume that qs is Q-expressible in S1. Then Theo-
rem 6 gives that M(qs) is a realization, and this query is
also from Q. We show that M(qs) is also a realization of
qs in S2. Let qr,i be the canonical infinitary UCQ rewrit-
ing of the OMQ Qi = (Oi, sch(M),M(qs)), i ∈ {1, 2}.
By Theorem 5, qs ≡S M−(qr,1). Since O1 |= O2, we
have Q2 ⊆sch(M) Q1. This clearly implies that every CQ
in qr,2 is also in qr,1. Thus qs ≡S M−(qr,1) implies qs ⊇S

M−(qr,2). It remains to argue that qs ⊆S M−(qr,2). Since
qr,2 is a rewriting of Q2, we have Q2 ⊆sch(M) qr,2. By
the semantics and definition of Q2, M(qs) ⊆sch(M) Q2

and thus M(qs) ⊆sch(M) qr,2. Point 3 of Lemma 4 yields
qs ⊆S M−(qr,2) as desired. o

Expressibility and Verification in DL-Lite
We consider OBDA specifications in which the ontology is
formulated in a dialect of DL-Lite. The distinguishing fea-
ture of logics from this family is that finite UCQ rewritings

of OMQs always exist. Therefore, Theorems 5 and 6 im-
mediately imply decidability of the verification and express-
ibility problem, respectively. It is, however, well known that
UCQ rewritings can become exponential in size (Gottlob et
al. 2014) and thus optimal complexity bounds are not imme-
diate.

We consider the dialect DL-LiteRhorn as a typical repre-
sentative of the DL-Lite family of logics. However, our re-
sults also apply to many other dialects since their proof rests
only on the following properties, established in (Artale et al.
2009).
Theorem 8. In DL-LiteRhorn,

1. all OMQs Q have a UCQ-rewriting in which all CQs are
of size polynomial in |Q|;

2. OMQ evaluation is in NP in combined complexity.
We remark that the results presented in this section

are related to those obtained in (Cima 2017), where the
DL-LiteA,id dialect of DL-Lite is considered, mappings
are GLAV, and queries CQs. A main difference is that
Cima’s technical results concern rewritings that are com-
plete but not necessarily sound, which corresponds to re-
placing ‘ansqs(D) = certQ(M(D))’ in Definition 1 with
‘ansqs(D) ⊆ certQ(M(D))’. Some of his technical con-
structions are similar to ours. Note that DL-LiteA,id also
satisfies the conditions from Theorem 8 and thus our results
apply to [DL-LiteA,id,GAV] as well.

For an OMQQ = (O,S, q), withO formulated in FO(=)
and q a UCQ, the canonical UCQ-rewriting of size n is the
UCQ qc that consists of all pairs (A,a) viewed as a CQ
where a ∈ certQ(A) and |A| ≤ n. The following lemma
is interesting in connection with Point 1 of Theorem 8 as
it allows us to concentrate on canonical UCQ rewritings of
polynomial size.
Lemma 9. Let Q = (O,S, q) be an OMQ with O formu-
lated in FO(=) and q a UCQ. If Q has a UCQ-rewriting qr
in which all CQs are of size at most n, then the canonical
UCQ-rewriting qc of size n is also a rewriting of Q.

We are now ready to establish the upper bound.

Theorem 10. In [DL-LiteRhorn,GAV], the UCQ-to-UCQ ex-
pressibility and verification problems are in Πp

2.
Proof. As remarked before Theorem 6, expressibility poly-
nomially reduces to verification and thus it suffices to con-
sider the latter. Hence let the following be given: an OBDA
specification S = (O,M,S) from [DL-LiteRhorn,GAV], a
UCQ qs over schema S, and a UCQ qt over the schema
sch(M). Let n be the size of this input.

Let Q = (O, sch(M), qt) and note that the size of Q is
polynomial in n. By Point 1 of Theorem 8, we can assume
that Q has a UCQ-rewriting in which all CQs are of size
P (n), P a polynomial. By Lemma 9, we can even assume
that this rewriting is the canonical UCQ-rewriting qc of size
P (n). By Theorem 5, qt is thus a realization of qs iff qs ≡S

M−(qc). We show that both inclusions of this equivalence
can be checked in Πp

2.
First, consider the inclusion qs ⊆S M−(qc). It holds iff

for every q in qs, there is a p in M−(qc) and a homomor-
phism p → q. This condition can be checked even in NP:



iterate over all CQs q in qs (of which there are at most
n), guess a disjunct p from M−(qc), and verify in NP that
p→ q.

To guess a p in M−(qc), it suffices to guess a pair (A,a)
in qc and suitable mappings from M for every fact in A,
which determine p. Then, p can be computed in polynomial
time fromA and these suitable mappings. We guess the pair
(A,a) from qc by guessing an arbitrary ABox A of size at
most P (n) and then verifying that a ∈ certQ(A). By Point 2
of Theorem 8 this verification is possible in NP.

We next consider the inclusion M−(qc) ⊆S qs. This
holds iff for every p in M−(qc), there is a CQ q in qs such
that q → p. We can thus universally guess a p in M−(qc),
then iterate over all CQs q in qs, and for each such q check
in NP whether q → p. For universally guessing p, we ac-
tually guess a CQ p of size at most P ′(n) and then verify
that it is in M−(qc). It has already been argued above that
this is possible in NP. Overall, we obtain a Πp

2-algorithm, as
desired. o

We next show that the expressibility problem in
[DL-LiteRhorn,GAV] is Πp

2-hard, and thus the same holds
for the verification problem. Interestingly, the lower bound
already applies when the ontology is empty and the source
query is a CQ. As noted in the introduction, this shows
that expressibility of a source CQ as a (U)CQ over UCQ
views is Πp

2-hard, and in fact it is Πp
2-complete by Theo-

rem 10. This corrects a (very likely) erroneous statement of
NP-completeness in (Levy et al. 1995).
Theorem 11. The CQ-to-CQ expressibility problem is Πp

2-
hard for GAV mappings and the empty ontology.

The proof is by reduction of validity of ∀∃-QBFs. By The-
orem 6, expressibility in the absence of an ontology amounts
to checking the containment M−(M(qs)) ⊆ qs, which is
equivalent to the ∀∃-statement that for all p ∈M−(M(qs))
there is a homomorphism qs → p. Hence we encode a
∀∃-quantified Boolean formula such that the outer univer-
sal quantifiers correspond to the different choices of map-
pings when taking a p ∈ M−(M(qs)), whereas the inner
existential quantifiers of the formulas correspond to homo-
morphisms qs → p.

Expressibility in ELHI: Upper Bound for
Rooted Queries

We show that the expressibility problem in [ELHI,GAV] is
in CONEXPTIME when the source query is a rooted UCQ.
Here, a CQ q is rooted or an rCQ if every variable from
q is reachable from an answer variable in the hypergraph
Hq := (var(q), {{x1, . . . , xn} | R(x1, . . . , xn) ∈ q}) and
a UCQ is rooted or an rUCQ if every CQ in it is rooted. In
practice, many relevant queries are rooted. Our aim is thus
to prove the following result.
Theorem 12. In [ELHI,GAV], the rUCQ-to-UCQ express-
ibility problem is in CONEXPTIME.

To prepare for lifting the result from expressibility to ver-
ification later, we actually establish a slightly more general
result as needed. Note that the following implies Theorem 12
since, by Theorem 6, we can simply use M(qs) for qt.

Theorem 13. Given an OBDA setting S = (O,M,S)
from [ELHI,GAV], an rUCQ qs over S, and a UCQ qt
over sch(M), it is in CONEXPTIME to decide whether
M−(qr) ⊆S qs, where qr is an infinitary UCQ-rewriting
of the OMQ Q = (O, sch(M), qt).

To prove Theorem 13, we now describe a NEXPTIME
algorithm for deciding the complement of the problem de-
scribed there: we want to check whether M−(qr) 6⊆ qs, that
is, whether there is a CQ p in the UCQ M−(qr) such that
q 6→ p for all CQs q in qs. Because all rewritings of Q are
equivalent, it suffices to prove the theorem for any particular
infinitary UCQ-rewriting qr of Q. We choose to work with
the canonical one introduced at the beginning of the charac-
terizations section. The algorithm is as follows:

1. Guess a sch(M)-ABox A such that |adom(A)| ≤ |qt| +
|qt| · |O||qs|+1 and a tuple a in A of the same arity as qt.

2. Verify that a ∈ certQ(A) to make sure that (A,a) viewed
as a CQ is in the UCQ qr. This can be done by an algo-
rithm that is exponential in |O| and |qt|, but only polyno-
mial in |A|; see for example (Krisnadhi and Lutz 2007).
Hence, the overall running time is single exponential in
the size of the original input.

3. Guess a disjunct p from the UCQ M−(A,a) by guessing,
for each fact α in A, a suitable mapping from M. Note
that both A and p are of single exponential size.

4. Verify that q 6→ p for all CQs q in the rUCQ qs. This can
be done in single exponential time using brute force.

This is clearly a NEXPTIME algorithm.

Lemma 14. The algorithm decides the complement of the
problem in Theorem 13.

It is easy to verify the soundness part: a successful run of
the algorithm identifies p as a CQ in M−(qr) such that for
any disjunct q of qs, q 6→ p. Completeness is less obvious,
mainly because of the magical size bound used in Step 1. We
need some preliminaries.

An ABox A is tree-shaped if the undirected graph GA =
(adom(A), {{a, b} | r(a, b) ∈ A}) is acyclic, connected
and r(a, b) ∈ A implies that s(a, b) /∈ A for all role
names s 6= r and that s(b, a) /∈ A for all role names
s. An ABox A is pseudo tree-shaped with core C ⊆ A
if there is a tree-shaped ABox Aa with root a for every
a ∈ adom(C), with mutually disjoint domains, such that
A = C ∪

⋃
a∈adom(C)Aa. The outdegree of A is the max-

imal outdegree of the trees underlying any of the Aa.
The following lemma is an adaptation of Proposition 23

in Appendix B of (Bienvenu et al. 2016):

Lemma 15. Consider an ELHI-ontologyO, an OMQQ =
(O,S, q) with q a UCQ, an S-ABox A, and an answer a ∈
certQ(A). Then there is a pseudo tree-shaped S-ABox A′
and a tuple a′ in the core of A′ such that

1. the core of A′ is not larger than |q| and the outdegree of
A is not larger than |O|;

2. a′ ∈ certQ(A′);
3. there is a homomorphism h fromA′ toA with h(a′) = a.



We are now ready for the completeness part of Lemma 14.
Assume that there is a CQ p in M−(qr) such that for any
disjunct q of qs, q 6→ p. Since qr is the canonical infinitary
UCQ-rewriting of Q, p is of the form M−(A,a) whereA is
a sch(M)-ABox with a ∈ certQ(A). Let A′ be the pseudo
tree-shaped ABox and a′ the answer whose existence is
guaranteed by Lemma 15. Moreover, let A′′ be the result of
removing from A′ all facts that contain at least one constant
whose distance from the core is larger than |qs| and adding
for all constants a of distance exactly |qs| from the core both
A(a) for all concept names A in sch(M) and r(a, a) for
all role names r in sch(M). We show in the appendix that
a′ ∈ certQ(A′′) and that there is a CQ p in M−(A′′,a′)
such that for any disjunct q of qs, q 6→ p (this depends on
qs being rooted). The former implies that (A′′,a′), seen as
CQ, is a disjunct in qr and hence Step 2 of the algorithm suc-
ceeds. The latter guarantees that Step 4 succeeds. Moreover,
A′′ satisfies the size bound given in Step 1 of the algorithm.

Expressibility in ELHI: Upper Bound for
Unrestricted Queries

We consider the UCQ-to-UCQ expressibility problem in
[ELHI,GAV], that is, we drop the assumption from the
previous section that the source query is rooted. This in-
creases the complexity from CONEXPTIME to 2EXPTIME.
Note that similar effects have been observed in the context
of different reasoning problems in (Lutz 2008; Bienvenu et
al. 2016). In this section, we show the upper bound.
Theorem 16. In [ELHI,GAV], the UCQ-to-UCQ express-
ibility problem is in 2EXPTIME.

As in the rooted case, we again prove a slightly more gen-
eral result that can be reused when studying the verification
problem. We can obtain Theorem 16 from the following by
setting qt = M(qs) and applying Theorem 6.
Theorem 17. Given an OBDA setting S = (O,M,S)
from [ELHI,GAV] a UCQ qs over S, and a UCQ qt over
sch(M), it is in 2EXPTIME to decide whether M−(qr) ⊆S

qs, where qr is an infinitary UCQ-rewriting of the OMQ
Q = (O, sch(M), qt).

To prove Theorem 17, we start by choosing a suitable
UCQ-rewriting qr. Instead of working with the canonical
infinitary UCQ-rewriting, here we prefer to use the UCQ
that consists of all pairs (A,a) viewed as a CQ and where
A is a pseudo tree-shaped sch(M)-ABox that satisfies a ∈
certQ(A) and is of the dimensions stated in Lemma 15, that
is, the core of A is not larger than |q| and the outdegree of
A is not larger than |O|. Due to that lemma, qr clearly is an
infinitary UCQ-rewriting of Q.

We give a decision procedure for the complement of the
problem in Theorem 17. We thus have to decide whether
there is a pseudo-tree shaped sch(M)-ABox A of the men-
tioned dimensions, an a ∈ certQ(A), and a CQ p in the UCQ
M−(A, a) such that q 6→ p for all CQs q in qs. This can
be done by constructing a two-way alternating parity tree
automaton (TWAPA) A on finite trees that accepts exactly
those trees that represent a triple (A,a, p) with the compo-
nents as described above, and then testing whether the lan-
guage accepted by A is empty.

In the following, we detail this construction. We reuse
some encodings and notation from a TWAPA construction
that is employed in (Bienvenu et al. 2016) to decide OMQ
containment as this saves us from redoing certain routine
work. A tree is a non-empty (and potentially infinite) set
T ⊆ N∗ closed under prefixes. We say that T is m-ary if
T ⊆ {1, . . . ,m}∗ and call the elements of T the nodes of
the tree and ε its root. For an alphabet Γ, a Γ-labeled tree is
a pair (T, L) with T a tree and L : T → Γ a node labeling
function.

We encode triples (A,a, p) as finite (|O| · |qt|)-ary Σε ∪
ΣN -labeled trees, where Σε is the alphabet used for labeling
the root node and ΣN is for non-root nodes. These alphabets
are different because the root of a tree represents the core
part of a pseudo tree-shaped ABox whereas each non-root
node represents a single constant of the ABox that is outside
the core. Let Ccore be a fixed set of |qt| constants. Formally,
the alphabet Σε is the set of all triples (B,a, µ) where B is
a sch(M)-ABox of size at most |qt| that uses only constants
from Ccore, a is a tuple over Ccore whose length matches the
arity of qs, and µ associates every fact α in B with a mapping
µ(α) ∈ M that is suitable for α. The alphabet ΣN consists
of all triples (Θ,M, µ) where Θ ⊆ (NC∩sch(M))]{r, r− |
r ∈ NR ∩ sch(M)} ] Ccore contains exactly one (potentially
inverse) role and at most one element of Ccore, M ∈ M
is a mapping suitable for the fact r(a, b) with r the unique
role name in Θ, and µ assigns to each A ∈ Θ a mapping
µ(A) ∈ M suitable for the fact A(a).2 In the following,
a labeled tree generally means a (|O| · |qt|)-ary Σε ∪ ΣN -
labeled tree.

A labeled tree is proper if (i) the root node is labeled with
a symbol from Σε, (ii) each child of the root is labeled with a
symbol from ΣN that contains an element of Ccore, (iii) every
other non-root node is labeled with a symbol from ΣN that
contains no constant name, and (iv) every non-root node has
at most |O| successors and (v) for every a ∈ Ccore, the root
node has at most |O| successors whose label includes a. A
proper labeled tree (T, L) with L(ε) = (B,a, µ) encodes
the triple (A,a, p) where A is the ABox

B ∪ {A(x) | A ∈ Θ(x)}
∪ {r(b, x) | {b, r} ⊆ Θ(x)} ∪ {r(x, b) | {b, r−} ⊆ Θ(x)}
∪ {r(x, y) | r ∈ Θ(y), y is a child of x,Θ(x) ∈ ΣN}
∪ {r(y, x) | r− ∈ Θ(y), y is a child of x,Θ(x) ∈ ΣN},

Θ(x) denoting Θ when L(x) = (Θ,M, µ) (and undefined
otherwise), and where p is the CQ from M−(A) that can be
obtained by choosing for every fact in A the suitable map-
ping from M assigned to it by L.

The desired TWAPA A is obtained as the intersection of
two TWAPAs A1 and A2, where A1 accepts exactly the
proper labeled trees (T, L) that encode a pair (A,a, p) with
a ∈ certQ(A) and A2 is obtained as the complement of an
automaton A2 that accepts a proper labeled tree (T, L) en-
coding a pair (A,a, p) iff q → p for some CQ q in qs. In
fact, the automaton A1 is what we can reuse from (Bienvenu
et al. 2016), see Point 1 in Proposition 13 there. The only
difference is that our trees are decorated in a richer way, so

2Here, a and b are arbitrary but fixed constants.



in our case the TWAPA ignores the part of the labeling that
is concerned with mappings from M. The number of states
of A1 is single exponential in |qt| and |O|.

We now sketch the construction of the automaton A2 for
a single CQ q of qs (the general case can be dealt with us-
ing union). Let q1, . . . , qk be the maximal connected com-
ponents of q. We define automata A2,1, . . . ,A2,k where A2,i

accepts (T, L) encoding (A,a, p) iff qi → p, and then inter-
sect to obtain A2. Let (T, L) be a proper labeled tree. A set
T ′ ⊆ T is a subtree of T if for any s, t ∈ T ′, all nodes from
T that are on the shortest (undirected) path from s to t are
in T ′. We use (T ′, L) to denote the restriction of (T, L) to
T ′ and M−(T ′, L) to denote the subquery of p which con-
tains only the atoms in p that can be derived from the part of
A generated by the subtree (T ′, L) of (T, L).

To define A2,i, let C denote the set of all labeled trees
(T ′, L) of size at most |qi| such that there is a proper labeled
tree (T, L) and qi →M−(T ′, L) with a homomorphism that
only needs to respect the answer variables from q that actu-
ally occur in qi (if there are any, then T ′ must thus contain
the root of T ). The automaton A2,i is then constructed such
that it accepts a proper labeled tree (T, L) iff it contains a
subtree from C. It should be clear that such an automaton can
be constructed using only single exponentially many states.
Moreover, it can be verified thatA2,i accepts exactly the de-
sired trees. We obtain an overall automaton with single ex-
ponentially many states which together with the EXPTIME-
complete emptiness problem of TWAPAs gives Theorem 17.

Verification in ELHI: Upper Bounds
We show that in [ELHI,GAV], the complexity of the ver-
ification problem is not higher than the complexity of the
expressivity problem both in the rooted and in the general
case.

Theorem 18. In [ELHI,GAV],

1. the rUCQ-to-UCQ verification problem can be decided in
CONEXPTIME.

2. the UCQ-to-UCQ verification problem can be decided in
2EXPTIME.

Recall the characterization of realizations from Theo-
rem 5: a UCQ qt is a realization of qs iff qs ≡ M−(qr),
where qr is a rewriting of the OMQ (O, sch(M), qt). The
inclusion qs ⊇ M−(qr) is already treated by Theorems 13
and 17 and thus it remains to show that the converse inclu-
sion can be decided in the relevant complexity class. We
show that it is actually in EXPTIME even in the unrooted
case. We thus aim to prove the following.

Theorem 19. Given an OBDA setting S = (O,M,S)
from [ELHI,GAV], a UCQ qs over S, and a UCQ qt
over sch(M), it is in EXPTIME to decide whether qs ⊆S

M−(qr), where qr is an infinitary UCQ-rewriting of the
OMQ Q = (O, sch(M), qt).

For what follows, it is convenient to assume that the on-
tology O is in normal form, that is, all CIs in it are of one
of the forms > v A, A1 u · · · u An v B, A v ∃r.B, and
∃r.A v B where A,B and all Ai range over concept names

and r ranges over roles. It is well-known that every ELHI-
ontology O can be converted into an ELHI-ontology O′ in
normal form in linear time such that O′ is a conservative
extension of O in the model-theoretic sense (Baader et al.
2017). It is easy to verify that for the verification problem,
we can w.l.o.g. assume the involved ontology to be in normal
form.

We again start by choosing a suitable concrete infinitary
UCQ-rewriting to use for qr. As in the previous section,
we would like to use CQs derived from pseudo tree-shaped
ABoxes of certain dimension that entail an answer to the
OMQ Q, as sanctioned by Lemma 15. Here, however, we
use a slight strengthening of that lemma where Condition 2
is replaced with the following strictly stronger Condition 2′,
where C′ is the core of the pseudo tree-shaped ABox A′:

a′ ∈ certQ(C′ ∪ {A(a) | A′,O |= A(a), a ∈ dom(C′)}).

This condition essentially says that, in the universal model
of A′ and O (defined in the appendix), there is a homomor-
phism h from a CQ in the UCQ q in Q that only involves
constants from the core and ‘anonymous subtrees’ (gener-
ated by existential quantifiers) below them. This is true only
since O is assumed to be in normal form and it is a conse-
quence of the proof of Lemma 15 where one chooses a ho-
momorphism h from a CQ in q to the universal model of A
and O, selecting as the core C′ of the pseudo-tree ABox A′
to be constructed all constants a fromA that are in the range
of h or which root an anonymous subtree that contains an
element in the range of h, and then unraveling the rest of A.
Summing up, we thus use for qr the set of all pairs (A,a)
viewed as a CQ where A is a pseudo tree-shaped sch(M)-
ABox with core C that satisfies

a ∈ certQ(C ∪ {A(a) | A,O |= A(a), a ∈ dom(C)})

and is of the dimensions stated in Lemma 15.
For deciding qs ⊆S M−(qr), we need to show that for ev-

ery disjunct q in qs there is a disjunct p in M−(qr) such that
p → q. We can do this for every disjunct q of qs separately.
Hence let q be such a disjunct. To find a CQ p in M−(qr)
with p → q, we again aim to utilize TWAPAs. As in the
previous section, let Ccore be a fixed set of |qt| constants. A
homomorphism pattern for qt is a function λ that maps every
variable y in qt to a pair (a, o) ∈ Ccore×{core, subtree}. In-
formally, λ is an abstract description of a homomorphism
h from qt to the universal model of a pseudo-tree ABox
A and O (assume that the core of A uses only constants
from Ccore) such that h(x) = a when λ(x) = (a, core) and
h(x) is an element in the anonymous subtree below a when
λ(x) = (a, subtree).

We build one TWAPA Aλ for every homomorphism pat-
tern λ (there are single exponentially many). These TWA-
PAs again run on (|O| · |qt|)-ary Σε ∪ΣN -labeled trees that
encode a triple (A,a, p), defined exactly as in the previous
section and from now on are only referred to as labeled trees.
We also use the same notion of properness as in the previous
section. The TWAPA Aλ will accept exactly those labeled
trees (T, L) that are proper and encode a triple (A,a, p) such
that



1. there is a homomorphism h from qt(x) to the universal
model ofA andO that satisfies h(x) = a and follows the
homomorphism pattern λ and

2. p→ q.
Note that it would be sufficient to demand in Point 1 that
a ∈ certQ(A) and recall that, in the previous section, we
have reused an automaton from (Bienvenu et al. 2016) which
checks exactly this condition. That automaton, however, has
exponentially many states because it is built using a con-
struction known under various names such as query split-
ting, forest decomposition, and squid decomposition. To at-
tain an EXPTIME upper bound, though, the automaton Aλ

can only have polynomially many states. This is in fact
the reason why we have the strengthened Condition 2 of
Lemma 15.

We construct the automaton Aλ as the intersection of three
automata Aproper, Aλ1 , and A2, where Aproper accepts if the
input tree is proper, Aλ1 accepts trees that encode a triple
(A,a, p) that satisfy Condition 1 for λ and A2 accepts trees
that encode a triple (A,a, p) that satisfy Condition 2. It is
easy to build the automaton Aproper and we leave out the de-
tails. The precise construction of Aλ1 and A2 can be found
in the appendix, we only give a brief description here. Au-
tomaton Aλ1 works as follows: it accepts labeled trees (T, L)
whose root node label (B,a, µ) is such that the extension of
the ABox B with certain facts of the form A(a) results in
a universal model which admits a homomorphism follow-
ing pattern λ, and it then verifies that the facts A(a) used
in the extension can be derived from the ABox encoded by
(T, L). The automaton A2 checks Condition 2 by traversing
the input tree once from the root to the leaves and guessing
the homomorphism from p to q along the way. Some care is
required since p is represented only implicitly in the input.

Overall, we obtain single exponentially many automata
with polynomially many states each and we answer ‘yes’ if
any of the automata recognizes a non-empty language. This
gives Theorem 19.

Expressibility and Verification in EL:
Lower Bounds

We establish lower bounds that match the upper bounds ob-
tained in the previous three sections and show that they even
apply to [EL,GAV], that is, inverse roles are not required.
Theorem 20.

1. In [EL,GAV], the rUCQ-to-UCQ expressibility and veri-
fication problems are CONEXPTIME-hard.

2. In [EL,GAV], the UCQ-to-UCQ expressibility and verifi-
cation problems are 2EXPTIME-hard
By Theorem 6, it suffices to establish the lower bounds for

the expressibility problem. We prove both points of Theo-
rem 20 by a reduction from certain OMQ containment prob-
lems. For Point 1, we reduce from the following problem.
Theorem 21. (Bienvenu et al. 2016) Containment between
OMQs Q1 = (O,Σ, q1) and Q2 = (O,Σ, q2) with O
an ELI-ontology, q1 an AQ, and q2 a rooted UCQ is
CONEXPTIME-hard even when

1. q2(x) uses only symbols from Σ and
2. no symbol from Σ occurs on the right-hand side of a CI

in O.

We first establish Point 1 of Theorem 20 for [ELI,GAV]
instead of for [EL,GAV] and in a second step show how
to get rid of inverse roles. To reduce the containment
problem in Theorem 21 to rUCQ-to-UCQ expressibility in
[ELI,GAV], let Q1 = (O,Σ, A0(x)) and Q2 = (O,Σ, q)
be as in that theorem. We define an OBDA-specification
S = (O′,M,S) and a query qs over S as follows. Let B
be a concept name that does not occur in Q1 and Q2. Set

O′ = O ∪ {A0 v B}
S = Σ ∪ {B}

qs(x) = B(x) ∨ q(x)

Note that qs is a rooted UCQ, as required. Moreover, the
set M of mappings contains A(x) → A(x) for all concept
names A ∈ S and r(x, y) → r(x, y) for all role names
r ∈ S. Informally, the CI A0 v B ‘pollutes’ B, potentially
preventing the disjunct B(x) of qs to be expressible, but this
is not a problem if (and only if) Q1 6⊆ Q2.

Lemma 22. Q1 ⊆ Q2 iff qs is UCQ-expressible in S.

In short, Q1 6⊆ Q2 iff there is a tree-shaped Σ-ABox wit-
nessing this iff such an ABox, viewed as a CQ, is a dis-
junct of an infinitary UCQ-rewriting qr of the OMQ Q =
(O′,S, qs) iff qr 6⊆ qs. The latter is the case iff qs is not
UCQ-expressible in S by Lemma 6 and since M(qs) = qs
and M−(qr) = qr.

In the appendix, we describe how to replace the ELI-
ontology O with an EL-ontology. The crucial observation
is that the hardness proof from (Bienvenu et al. 2016) uses
only a single symmetric role S implemented as a composi-
tion r−0 ; r0 with r0 a normal role name, and that it is pos-
sible to replace this composition with a normal role name
r in O when reintroducing it in M−(qr) via mappings
r0(x, y)∧r0(y, z)→ r(x, z) where qr is an infinitary UCQ-
rewriting of the OMQ Q mentioned above.

The 2EXPTIME lower bound in Point 2 of Theorem 20 is
proved similarly, using 2EXPTIME-hardness of a different
containment problem also studied in (Bienvenu et al. 2016).

Conclusion
We believe that several interesting questions remain. For ex-
ample, our lower bounds only apply when the source query
is a UCQ and it would be interesting to see whether the com-
plexity drops when source queries are CQs. It would also
be interesting to consider ontologies formulated in more ex-
pressive DLs such as ALC. As a first observation in this di-
rection, we note the following undecidability result, where
ALCF is ALC extended with (globally) functional roles. It
is proved by a reduction from the emptiness of AQs w.r.t.
ALCF-ontologies (Baader et al. 2016).

Theorem 23. In [ALCF ,GAV], the AQ-to-Q expressibil-
ity and verification problems are undecidable for any Q ∈
{AQ,CQ,UCQ}.



Regarding the expressibility problem, we note that the re-
alization M(qs) identified by Theorem 6 does not use any
symbols introduced by the ontology and, in fact, is also a
realization regarding the empty ontology. It would be inter-
esting to understand how to obtain realizations that make
better use of the ontology and to study setups where it can
be unavoidable to exploit the ontology in realizations. This
is the case, for example, when source queries are formulated
in Datalog, the ontology is formulated in (some extension
of) EL, and target queries are UCQs. Finally, we note that it
would be natural to study maximally contained realizations
instead of exact ones and to take into account constraints
over the source databases.
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Appendix
Proof of Lemma 4

Lemma 4. Let M be a set of GAV mappings, q, q1 and q2
UCQs over S and r, r1 and r2 UCQs over sch(M). Then:

1. If q1 ⊆S q2, then M(q1) ⊆sch(M) M(q2).
2. If r1 ⊆sch(M) r2, then M−(r1) ⊆S M−(r2).
3. q ⊆S M−(r) iff M(q) ⊆sch(M) r.
Proof. We prove all statements for CQs, it is straightforward
to generalize to UCQs: one only needs to employ the char-
acterization of UCQ in terms of homomorphisms instead of
the one for CQs.

1. Since q1 ⊆ q2, we have q2 → q1. Let h be a ho-
momorphism witnessing this. It can be verified that re-
stricting h to the variables in the CQ M(q2)3 yields
a homomorphism from CQ M(q2) to CQ M(q1), thus
M(q1) ⊆sch(M) M(q2). In fact, let R(x) be a relational
atom in M(q2). Then R(x) was produced by some map-
ping ϕ(y) → R(z) ∈ M and homomorphism h′ from
ϕ(y) to q2 with h′(z) = x. Composing h′ with h enables
an application of the same mapping in q1 that delivers
R(h(x)) ∈M(q1), as required. Moreover, every equality
atom x = y in M(q2) must also be in q2 by construction
of M(q2). Thus h(x) = h(y) ∈ q1 or h(x) = h(y). In
the former case, h(x) = h(y) ∈ M(q1) by construction
of M(q1).

2. From r1 ⊆sch(M) r2, we obtain r2 → r1. Let h be a wit-
nessing homomorphism. We need to show that for each
CQ p1 in the UCQ M−(r1), there is a CQ p2 in the UCQ
M−(r2) such that p2 → p1. Thus let p1 be from M−(r1).
By construction of M−(r1), p1 is obtained from r1 by
choosing a mapping from M for each relational atom in
r1, ‘applying it backwards’, and then readding all equality
atoms. We identify p2 by choosing for every atom R(y)
of r2 the mapping chosen for R(h(y)) ∈ r1 in the con-
struction of p1. We can then straightforwardly define a
homomorphism h′ from p2 to p1 by extending h to the
fresh variables in p2.

3. For the “only if” direction, assume p → q for some
CQ p in the UCQ M−(r) and let h be a witnessing ho-
momorphism. Let h′ be the restriction of h to the vari-
ables in r. It can be verified that h′ is a homomorphism
from r to M(q). In fact, let R(x) be a relational atom
in r. Then by construction of M−(r) there is a mapping
ϕ(y) → R(z) ∈ M that was ‘applied backwards’ in the
construction of p and thus there is a homomorphism g
from ϕ(y) to M−(r) with g(z) = x. Composing g with
h enables an application of the same mapping in q that de-
livers R(h(x)) ∈ M(q), as required. The equality atoms
in r must also be satisfied since they are the same as in
M−(r).
For the “if” direction, assume that there is a homomor-
phism h from r to M(q). We need to show that there
is a CQ p in the UCQ M−(r) such that p → q. By

3Including all the answer variables, which are the answer vari-
ables from q2, even when they do not occur in any atom of M(q2).

construction, every atom R(x) in M(q) is produced by
some mapping ϕ(y) → R(z) ∈ M and homomorphism
g from ϕ(y) to q with g(z) = x. We identify p by choos-
ing for every atom R(y) of r the mapping that produced
R(h(y)) ∈M(q). We can then straightforwardly define a
homomorphism h′ from p to q by extending h to the fresh
variables in p.

o

Lemma 24. Let Q = (O,S, q) be an OMQ with O formu-
lated in FO(=), q a UCQ, and qr an infinitary UCQ rewriting
of Q. Then (O,S, qr) ⊆S qr.

Proof. For brevity, let Q′ = (O,S, qr). Take an S-ABox A
and an a ∈ adom(A) such that a ∈ certQ′(A). We show
that a ∈ certQ(A), which implies a ∈ ansqr (A) as desired
since qr is a rewriting of Q. Let I be a model of A and O.
We have to show that a ∈ ansq(I).

From a ∈ certQ′(A), we obtain a ∈ ansqr (I). This
clearly implies that there is an interpretation If that is ob-
tained by restricting I to a finite subset of the domain and
satisfies a ∈ ansqr (If ). Let AI be If viewed as an ABox,
restricted to the symbols in S. Since qr uses only sym-
bols from S, a ∈ ansqr (AI). As qr is a rewriting of Q,
a ∈ certQ(AI). Observe that I is a model of O and AI ,
and thus it follows that a ∈ ansq(I), as required. o

Proof Details for DL-Lite
Lemma 9. Let Q = (O,S, q) be an OMQ with O formu-
lated in FO(=) and q a UCQ. If Q has a UCQ-rewriting qr
in which all CQs are of size at most n, then the canonical
UCQ-rewriting qc of size n is also a rewriting of Q.

Proof. We show that qc ≡sch(M) qr. Since qr is a UCQ-
rewriting of Q, it then follows that qc is also a UCQ-
rewriting of O. We consider the two directions of the equiv-
alence separately.
qc ⊇sch(M) qr. This holds because every CQ q in qr is

also an element in qc. In fact, q(x) being in qr means that
it is of size at most n. Viewing q as an ABox and x as a
candidate answer, we trivially have x ∈ ansqr (q) and thus
x ∈ certQ(q) because qr is a rewriting of Q. As a conse-
quence, the pair (q,x) gives rise to a CQ in qc.
qc ⊆sch(M) qr. Let q in qc. We have to show that there

is a CQ q′ in qr such that q′ → q. By definition of qc, q
is a pair (A,a) viewed as a CQ such that a ∈ certQ(A).
Because qr is a rewriting of Q, it follows from the latter
that a ∈ ansqr (A). This means that there is some q′ in qr
with a homomorphism h from q′ to A that maps the answer
variables of q′ to a. As q is just A with a as the answer
variables, h shows q′ → q. o

Theorem 11. The CQ-to-CQ expressibility problem is Πp
2-

hard for GAV mappings and the empty ontology.

In preparation for the proof of Theorem 11, let us recall
the standard representation of 3SAT as a constraint satisfac-
tion problem (CSP) and sketch how this can be used to show
that the CQ-to-CQ expressibility problem is NP-hard for
GAV mappings and the empty ontology. Let ϕ(y1, . . . , ym)



be a propositional logic formula in 3CNF. Let S be the
schema that consists of all ternary relation names Cu1u2u3

with u1u2u3 ∈ {n, p}3. Every clause in ϕ can be viewed
as a fact over signature S by letting the ui represent the
polarities of the variables in the clause and using the vari-
ables from ϕ as constants. For example, ¬y2 ∨ y1 ∨ ¬y3
gives the fact Cn,p,n(y2, y1, y3). Thus, ϕ can be viewed as a
database Dϕ. What’s more, we can build a database D that
is independent of ϕ and such that Dϕ → D if and only if ϕ
is satisfiable. In CSP, D is called the template for 3SAT. It
is actually easy to find D: use two constants 0 and 1 that
represent truth values and add the fact Cu1u2u3(t1, t2, t3)
if the truth assignment t1, t2, t3 to the three variables of a
clause with polarities u1u2u3 makes the clause true. For ex-
ample, Cn,p,n(t1, t2, t3) is added for any t1t2t3 ∈ {0, 1}3
except 101.

How does this relate to the expressibility problem? Let
qs be Dϕ viewed as a Boolean CQ and take the mappings
Dϕ → A(x) and D → A(x) where Dϕ and D are viewed
as CQs in which all variables are answer variables with x
an arbitrary but fixed such variable. Then M−(M(qs)) is
(equivalent to)Dϕ∨D withDϕ andD viewed as a Boolean
CQs and thus it remains to apply Theorem 6 where qr is now
simply M(qs) since the ontology is empty.

We now lift this simple reduction to ∀∃-3SAT. Thus let

ϕ = ∀x0 · · · ∀xn∃y0 · · · ∃ymψ(x1, . . . , xn, y1, . . . , ym)

be a quantified Boolean formula with ψ in 3CNF. We con-
struct an OBDA specification (∅,M,S) with M a set of
GAV mappings as well as a Boolean CQ qs over schema
S such that ϕ is true iff qs is CQ-expressible in (∅,M,S).

The universally quantified variables have a different sta-
tus in the reduction as, unlike the existentially quantified
variables, they are not represented by variables in qs. For
example, the clause (y1 ∨ ¬x0 ∨ ¬y1) gives rise to the
atom Cp¬x0n(y1, y1). This is compensated by constructing
the mappings in M so that M−(M(qs)) is now essentially
a disjunction of (qs and) exponentially many versions of the
template Dϕ, one for every truth assignment to the univer-
sally quantified variables. For example, such a template in-
cludes Cp¬x0n(t1t2) for all t1t2 ∈ {0, 1}2 if it represents
a truth assignment that makes x0 true and otherwise it in-
cludes Cp¬x0n(t1t2) for all t1t2 ∈ {0, 1}2 except 01. To
achieve this, we use binary relations in the head of mappings
instead of unary ones. In fact, we want M(qs) to be of the
form M(qs) =

∧n
i=0 ri(y0, y1) and there will be two ways

to translate each ri(y0, y1) backwards in the construction of
M−(M(qs)), corresponding to the two possible truth values
of the universally quantified variable xi.

We now make the reduction precise. Let U =
{x0, . . . , xn,¬x0, . . . ,¬xn, n, p}. For every triple
(u1, u2, u3) ∈ U3 we include a relation Cu1u2u3 in S.
The arity of Cu1u2u3 is the number of positions in
(u1, u2, u3) that are n or p. Additionally, S contains a
binary relation Z which helps us to achieve that M(qs)
is of the intended form even when qs admits non-trivial
automorphisms.

We define qs to encode ϕ. The existentially quantified
variables of qs are y0, . . . , ym. For every clause `1 ∨ `2 ∨ `3

in ψ, we introduce an atom in qs with the symbol Cu1u2u3 ,
where ui = `i if `i contains a universally quantified vari-
able, ui = p if `i is a positive literal with an existentially
quantified variable and ui = n if `i is a negative literal with
an existentially quantified variable. The variables that oc-
cur in this atom are the existentially qualified variables of
the clause in the order of their appearance in the clause, see
above for an example. Moreover, we add the atom Z(y0, y1)
to qs, assuming w.l.o.g. that there are at least two existen-
tially quantified variables in ϕ.

We now construct the GAV mappings in M. For every
universally quantified variable xi of ϕ, we introduce three
mappings with the same head ri(z0, z1):

1. In the first mapping q′s(z0, z1) → ri(z0, z1), the body is
qs with y0 and y1 renamed to z0, z1 (and all existential
quantifiers removed).

2. The body of the second mapping τ0i (z0, z1)→ ri(z0, z1)
generates the part of the template that must be there when
xi is assigned truth value 0. The variables z0 and z1 rep-
resent the two elements of the template.
The body τ0i only contains the variables z0 and z1. For
every u1u2u3 ∈ U3 and sequence v = v1v2 · · · over
{z0, z1} of the same length as the arity of Cu1u2u3

, we
add the atom Cu1u2u3

(v) to τ0i if at least one of the fol-
lowing holds:

(a) ¬xi is among u1, u2 and u3,
(b) vi = z0 and the i-th appearance of n or p in (u1, u2, u3)

is n for some i,
(c) vi = z1 and the i-th appearance of n or p in (u1, u2, u3)

is p for some i.

We also add the atomsZ(z0, z0),Z(z0, z1),Z(z1, z0) and
Z(z1, z1) to τ0i .
(For example in τ03 we add the atoms Cpx3n(z0, z0),
Cpx3n(z1, z0), and Cpx3n(z1, z1), but not Cpx3n(z0, z1).
We add all Cp¬x3n(z0, z0), Cp¬x3n(z0, z1),
Cp¬x3n(z1, z0) and Cp¬x3n(z1, z1). Also, we add
Cx2x3p(z1) but not Cx2x3p(z0).)

3. The body τ1i (z0, z1) of the third mapping τ1i (z0, z1) →
ri(z0, z1) is dual to τ0i (z0, z1) in that it encodes the case
where xi is true. This means the definition is as above
with the difference that in Condition 2a, the literal xi, and
not ¬xi, is required to be among u1, u2 and u3.

Lemma 25. ϕ is true iff qs is CQ-expressible in (∅,M,S).

Proof. By Theorem 6, it suffices to show that ϕ is true iff
M−(M(qs)) ⊆ qs, that is, iff there is a homomorphism
from qs to every disjunct of M−(M(qs)).

We first describe the UCQ M−(M(qs)). First observe
that M(qs) is indeed

∧n
i=0 ri(y0, y1): The mapping q′s →

ri(z0, z1) has a match at (y0, y1) for every i and it has no
other matches since Z(z0, z1) is in q′s and Z(y0, y1) is the
only atom in qs the contains Z. The mappings τvi (z0, z1)→
ri(z0, z1) do not match anywhere in qs for v ∈ {0, 1}, since
the atoms Z(z0, z0), Z(z0, z1), Z(z1, z0) and Z(z1, z1) all
appear in the body of these mappings. There are 3n+1 dis-
juncts in M−(M(qs)), one for every combination of n + 1



choices of the three different mappings with head ri(z0, z1),
for every i ∈ {0, . . . , n}. We now prove the lemma.

“⇒”. Assume that ϕ is true. We want to show that there
is a homomorphism from qs into every CQ in M−(M(qs)).
Pick an arbitrary CQ p in M−(M(qs)). Such a disjunct cor-
responds of a choice of one of the bodies q′s, τ

0
i , or τ1i for

each i ∈ {0, . . . , n}.
First consider the case where for some i we choose q′s. In

that case p contains an isomorphic copy of qs and thus we
are done.

Now consider the case for no i we choose a mapping
with body q′s, that is, for every i we choose τ0i or τ1i .
This corresponds to an assignment t of the truth val-
ues 0 and 1 to the variables x0, . . . , xn. Because ϕ =
∀x0, . . . , xn∃y0, . . . , ymψ is true we can extend t to an as-
signment for x0, . . . , xn, y0, . . . , ym that makes ψ true. We
define the homomorphism h from qs to p such that h(yj) =
yt(yj) for all j ∈ {0, . . . ,m}. We need to verify that h is a
homomorphism. All atoms with the symbol Z are preserved
as by definition of the τ0i and τ1i , there is a Z atom in p for
any pair over {y0, y1}. Consider then any atom Cu1u2u3

(y)
from qs. There is a corresponding clause `1 ∨ `2 ∨ `3 in ψ
that is true under the assignment t. It follows that one of the
literals `1, `2, `3 is true under t. We make a case distinction:

If `k = xi is a universally quantified variable, then
t(xi) = 1 and hence p contains τ1i . By (the implicit) Condi-
tion 3a, from the definition of M, it follows that τ1i contains
the atom Cu1u2u3

(yt(y)).
In the case where `k = ¬xi, we use the same argument

and Condition 2a.
If `k = yj is an existentially quantified variable, then

uk = p and t(yj) = 1. Hence, h(yj) = y1 and from Condi-
tion (2c) or (3c), the atom Cu1u2u3

is in τ00 and in τ10 , thus
in p (since we can assume w.l.o.g. that there is at least one
universally quantified variable).

The case where `k = ¬yj is analogous, using Condi-
tions (2b) or (3b).

“⇐”. Assume that there is a homomorphism from qs into
every disjunct of M−(M(qs)). We want to show that ϕ
is true. So take any assignment t for x0, . . . , xn. We need
to extend t to an assignment t′ for x0, . . . , xn, y0, . . . , ym
that makes ψ true. Consider the disjunct pt of M−(M(qs))

that arises from choosing the mapping τ
t(xi)
i (z0, z1) →

ri(z0, z1) for each i = 0, . . . , n. By assumption, there is a
homomorphism h from qs to pt. Clearly, pt contains only the
variables y0 and y1. We define t′ such that t′(xi) = t(xi),
t′(yj) = 0 if h(yj) = y0, and t′(yj) = 1 if h(yj) = y1.

It remains to be shown that ψ is true under t′. Take
an arbitrary clause `1 ∨ `2 ∨ `3 in ψ. Consider the corre-
sponding atom Cu1u2u3

(y) in qs. As h is a homomorphism,
Cu1u2u3

(h(y)) is in pt. By the definition of pt this means
that Cu1u2u3

(h(y)) is contained in τ t(xi)
i for some i. Hence

one of the conditions (a), (b) or (c) from Point 2 or 3 of the
construction of M is satisfied.

If (a) is satisfied and t(xi) = 0, then ¬xi is among
u1, u2, u3. It follows that then ¬xi is a literal in `1 ∨ `2 ∨ `3
and hence the clause is true under t′ because t′(xi) = t(xi).

In case (a) is satisfied and t(xi) = 1, we can reason analo-
gously.

If (b) is satisfied, then h(yi) = y0 for some yi in y, and the
i-th appearance of either n or p in (u1, u2, u3) is n. Hence
¬yi is a literal in `1∨`2∨`3 which makes the clause true be-
cause t′(y1) = 0 since h(yi) = y0. We reason analogously
in the case where (c) is satisfied. o

Preliminary: Two-way alternating parity
automata (TWAPA)

We introduce two-way alternating parity automata on finite
trees (TWAPAs).

A tree is a non-empty (and potentially infinite) set T ⊆
N∗ closed under prefixes. We say that T is m-ary if T ⊆
{1, . . . ,m}∗. For an alphabet Γ, a Γ-labeled tree is a pair
(T, L) with T a tree and L : T → Γ a node labeling func-
tion.

For any set X , let B+(X) denote the set of all positive
Boolean formulas overX , i.e., formulas built using conjunc-
tion and disjunction over the elements of X used as propo-
sitional variables, and where the special formulas true and
false are allowed as well. An infinite path P of a tree T is a
prefix-closed set P ⊆ T such that for every i ≥ 0, there is a
unique x ∈ P with |x| = i.
Definition 26 (TWAPA). A two-way alternating parity au-
tomaton (TWAPA) on finite m-ary trees is a tuple A =
(S,Γ, δ, s0, c) where S is a finite set of states, Γ is a finite
alphabet, δ : S × Γ → B+(tran(A)) is the transition func-
tion with tran(A) = {〈i〉s, [i]s | −1 ≤ i ≤ m and s ∈ S}
the set of transitions of A, s0 ∈ S is the initial state, and
c : S → N is the parity condition that assigns to each state a
priority.

Intuitively, a transition 〈i〉s with i > 0 means that a copy
of the automaton in state s is sent to the i-th successor of
the current node, which is then required to exist. Similarly,
〈0〉s means that the automaton stays at the current node and
switches to state s, and 〈−1〉s indicates moving to the pre-
decessor of the current node, which is then required to exist.
Transitions [i]s mean that a copy of the automaton in state
s is sent on the relevant successor if that successor exists
(which is not required).
Definition 27 (Run, Acceptance). A run of a TWAPA A =
(S,Γ, δ, s0, c) on a finite Γ-labeled tree (T, L) is a T × S-
labeled tree (Tr, r) such that the following conditions are
satisfied:

1. r(ε) = (ε, s0);
2. if y ∈ Tr, r(y) = (x, s), and δ(s, L(x)) = ϕ, then there

is a (possibly empty) set S ⊆ tran(A) such that S (viewed
as a propositional valuation) satisfies ϕ as well as the fol-
lowing conditions:

(a) if 〈i〉s′ ∈ S, then x · i ∈ T and there is a node y ·j ∈ Tr
such that r(y · j) = (x · i, s′);

(b) if [i]s′ ∈ S and x · i ∈ T , then there is a node y · j ∈ Tr
such that r(y · j) = (x · i, s′).

We say that (Tr, r) is accepting if on all infinite paths ε =
y1y2 · · · of Tr, the maximum priority that appears infinitely



often is even. A finite Γ-labeled tree (T, L) is accepted by A
if there is an accepting run of A on (T, L). We use L(A) to
denote the set of all finite Γ-labeled tree accepted by A.

It is known (and easy to see) that TWAPAs are closed un-
der complementation and intersection, and that these con-
structions involve only a polynomial blowup. It is also
known that their emptiness problem can be solved in time
single exponential in the number of states and polynomial in
all other components of the automaton. In what follows, we
shall generally only explicitly analyze the number of states
of a TWAPA, but only implicitly take care that all other com-
ponents are of the allowed size for the complexity result that
we aim to obtain.

Preliminary: Universal models
We introduce the universal model IA,O of an ABox A and
an ontology O in ELHI. The main properties of IA,O are:

• IA,O is a model of A and O;

• for every model I of A and O there exists a homomor-
phism from IA,O to I that maps each a ∈ adom(A) to
itself.

IA,O is constructed using a standard chase procedure. We
assume that O is in normal form.

We start by defining the universal model IA,O of A and
O. It is convenient to use ABox notation when constructing
IA,O and so we will construct a (possibly infinite) ABox
Auni
O and define IA,O as the interpretation corresponding to
Auni
O .
Thus assume that A and O are given. The full comple-

tion sequence of A w.r.t. O is the sequence of ABoxes
A0,A1, . . . defined by settingA0 = A and definingAi+1 to
be Ai extended as follows (recall that we abbreviate r(a, b)
by r−(b, a) and that r ranges over roles):

(i) If ∃r.B v A ∈ O and r(a, b), B(b) ∈ Ai, then add A(a)
to Ai+1;

(ii) if > v A ∈ O and a ∈ adom(Ai), then add A(a) to
Ai+1;

(iii) if B1 u B2 v A ∈ O and B1(a), B2(a) ∈ Ai, then add
A(a) to Ai+1;

(iv) if A v ∃r.B ∈ T and A(a) ∈ Ai then take a fresh indi-
vidual b and add r(a, b) and B(b) to Ai+1;

(v) if r v s ∈ O and r(a, b) ∈ Ai, then add s(a, b) to Ai+1.

Now let Auni
O =

⋃
i≥0Ai and let IA,O be the interpretation

corresponding to Auni
O . It is straightforward to prove the fol-

lowing properties of IA,O.

Lemma 28. Assume O is in normal form. Then

• IA,O is a model of A and O;
• for every model I of A and O there exists a homomor-

phism from IA,O to I that maps each a ∈ adom(A) to
itself.

Note that the ABox Auni
O can contain additional constants

and can even be infinite.
The proof of the following is straightforward.

Lemma 29. For all facts A(a) and r(a, b) with a, b ∈
adom(A):

• A, T |= A(a) iff A(a) ∈ Auni
O ;

• A, T |= r(a, b) iff r(a, b) ∈ Auni
O .

Preliminary: Derivation Trees
In the next sections we use TWAPA to obtain EXPTIME-
decision procedures for entailment of atomic queries. The
construction of these automata relies on a characterization
of entailment of AQs in term of derivation trees.

Fix an ELHI ontology O in normal form and an ABox
A. A derivation tree for a fact A0(a0) in A, with A0 ∈ NC

and a0 ∈ adom(A), is a finite adom(A) × NC-labeled tree
(T, V ) that satisfies the following conditions:

1. V (ε) = (a0, A0);

2. if V (x) = (a,A) and neither A(a) /∈ A nor > v A ∈ O,
then one of the following holds:

• x has successors y1, . . . , yk, k ≥ 1 with V (yi) =
(a,Bi) for 1 ≤ i ≤ k and O |= B1 u · · · uBk v A;

• x has a single successor y with V (y) = (b, B) and
there is an ∃s.B v A ∈ O and an r(a, b) ∈ A such
that O |= r v s.

Note that the first item of Point 2 above requires O |=
A1 u · · · u An v A instead of A1 u A2 v A ∈ O to
‘shortcut’ anonymous parts of the universal model. In fact,
the derivation of A from A1u· · ·uAn byO can involve the
introduction of anonymous elements.

Lemma 30. Let A ∈ NC and let a be a constant in A. We
have A,O |= A(a) iff there is a derivation tree for A(a) in
A.

The proof is a straightforward variation of an analogous
result for the stronger logic ELIHF∩−lhs⊥ in (Bienvenu et
al. 2016). Details are omitted.

Expressibility in ELHI: Upper Bound for
Rooted Queries, Missing Details

Lemma 14. The algorithm decides the complement of the
problem in Theorem 13.

Proof. As explained in the main text, the soundness part is
easy.

For the completeness direction assume that M−(qr) ⊆S

qs is false. This means there is an ABox A and tuple a such
that (A,a) is in the canonical rewriting qr of Q and there
is p in M−(A,a) such that for all q in qs we have q 6→ p.
We show how to obtain an ABox A′′ that the algorithm can
choose in step 1 in order to accept.

By Lemma 15 there exists an pseudo tree-shaped ABox
A′ of core-size |qt| and branching degree at most |O| and
tuple a′ in the core ofA′ such that a′ ∈ certQ(A′) and there
is a homomorphism (A′,a′)→ (A,a).

Define A′′ to be obtained from the pseudo tree-shaped
ABoxA′ by removing all facts that contain at least one con-
stant that has a distance larger than |qs| from the core. Fur-
thermore, we add all facts A(b) and r(b, b) for all A and r



in sch(M) and for all constants b that have exactly distance
|qs| from the core.

The resulting size of A′′ is at most |qt|+ |qt| · |O||qs|, so
A′′ can be chosen in Step 1.

Claim: Step 2 succeeds, that is, a′ ∈ certQ(A′′).

Proof of claim: Define a homomorphism h : A′ → A′′ that
is the identity on constants of distance at most |qs| from the
core and maps a constant b of distance more than |qs| from
the core to the unique b′ of distance precisely |qs| such that
b is in the subtree rooted at b′. This indeed defines a homo-
morphism because in A′′ all symbols in sch(M) are true at
each constant with distance |qs|. Now a′ ∈ certQ(A′′) fol-
lows from a′ ∈ certQ(A′) because h is a homomorphism
that fixes the tuple a′.

We then describe the query p′ in M−(A′′) that can be cho-
sen in step 3. For every fact in A′′ that is also in A′ choose
the same mapping that was chosen to obtain p from A. For
all other facts we choose an arbitrary suitable mapping.

Claim: Step 4 succeeds, that is, q 6→ p′ for all q in qs.

Proof of claim: Assume towards contradiction that there is
a homomorphism g′ : q → p′ for some q in qs. Because
A′′ andA′ are equal when restricted to variables of distance
less than n from a′ it follows that p and p′ are equal when
restricted to variables of distance less than n from a′. This
is due to the fact that the distance of two variables from A
cannot decrease in p in M−(A), and similarly for A′′ and
p′.

Because |q| ≤ |qs| and q is rooted it follows that all con-
stants in the image of g′ : q → p′ have distance less than
|qs| from a in p. Since a lies in the core, these constants
have also distance less than |qs| from the core. Because p
and p′ are equal when restricted to constants of distance less
than |qs| from the core, there is a homomorphism g : q → p,
which contradicts our assumption on p.

o

Verification in ELHI: Upper Bound, Missing
Details

We describe the construction of the TWAPA Aλ. Recall that
Aλ will get as input (an encoding of) a triple (A,a, p) con-
sisting of a pseudo tree ABoxAwith a core C of size at most
|qt|, a tuple a of the same arity as qt and a CQ p ∈M−(A),
while λ is a homomorphism pattern that maps every variable
y in qt to a tuple (c, o) ∈ adom(C)×{core, subtree}. It will
accept this triple iff

1. there is a homomorphism h from qt to the universal
model of A and O that maps answer variables of qt to
a and λ(y) = (h(y), core) if h(y) ∈ Ccore and λ(y) =
(c, subtree), if h(y) maps into a fresh subtree in the uni-
versal model of A and O whose root is c ∈ Ccore and

2. p→ q.
It is easy to see that Condition 1 holds for some λ if

and only if Condition 2′ from the definition of the UCQ-
rewriting qr in the main part of the paper holds. Recall that

Condition 2′ is the following requirement:

a′ ∈ certQ(C′ ∪ {A(a) | A′,O |= A(a), a ∈ dom(C′)}).

Hence Condition 1 guarantees that (A,a) is in the rewriting
qr. Together with the second point and the conditions on
the encoded tuples (A,a, p) this then means that there is
a λ such that Aλ accepts a tree encoding (A,a, p) iff p is a
disjunct in M−(qr) such that p→ q.

The automaton Aλ is constructed as the intersection of
three automata Aproper, Aλ1 and A2, where the first checks
if the input tree describes a proper tree, Aλ1 accepts trees
that encode a triple that satisfies Condition 1 and A2 accepts
trees that encode a triple that satisfies Condition 2. It is easy
to define the automaton Aproper, we leave out the details.

Definition of Aλ1 . To define Aλ1 , we first introduce some
notation. Let ROL be the set of roles that appear in O or
sch(M). Let CN the set of concept names that appear in O
or sch(M) and let tp = 2CN. Let U be the set of all partial
functions from the variables in qt to the set {core, subtree}.
We define a relationR ⊆ tp×U such that (t, f) ∈ R iff there
is a homomorphism g from qt restricted to variables in the
domain of f to the universal model ofO and {A(a) | A ∈ t}
such that g(y) = a iff f(y) = core. The relation R can be
computed in exponential time: Given a pair (t, f), compute
the universal model of {A(a) | A ∈ t} and O up to depth
|qt| and check for the existence of a suitable homomorphism
g using brute force.

Let A1 = (S, δ,Σε ] ΣN , s0, c) where

S = {s0} ] {sAb | A ∈ CN and b ∈ Ccore}
] {sAr,b | A ∈ CN and r ∈ ROL and b ∈ Ccore}
] {sAr | A ∈ CN and r ∈ ROL}
] {sA | A ∈ CN}

and c(s) = 1 for every s ∈ S, i.e. precisely the finite runs are
accepting. All states besides s0 are used to check whether
a certain fact A(a) is entailed in the universal model of A
and O. Following Lemma 30, this can be done by checking
the existence of an appropriate derivation tree. The state sAb
checks whetherA,O |= A(b). The state sAr,b checks whether
we are in an r-child d of b such thatA,O |= A(d). The state
sAr checks whether the current node d is an r-child such that
A,O |= A(d). The state sA checks whether for the current
node d we have A,O |= A(d).

We now describe the definition of the transition function
δ. To define δ(s0, l), where l = (B,a, µ) ∈ Σε we distin-
guish cases depending on whether the B and the a encoded
in l is compatible with the homomorphism pattern λ. That is
we check whether the following two conditions are fulfilled:

• λ maps the i-th answer variable xi from qt to (ai, core),
where ai is the i-the element of a.

• For every role atom r(z1, z2) in qt such that λ(zi) =
(bi, core) we have that r(b1, b2) ∈ B.

If these conditions are not fulfilled then we set δ(s0, l) =
false, meaning that the automaton Aλ1 immediately rejects



the input tree. If these conditions are fulfilled then define
δ(s0, l) to be:∧

z∈var(qt)
λ(z)=(b,core)

∧
A(z)∈qt

〈0〉sAb ∧ (1)

∧
Z⊆var(qt)

Z=λ−1({b}×{core,subtree})
Z 6=∅

∨
t∈tp

(t,f)∈R
f=π2◦λ|Z

∧
A∈t
〈0〉sAb (2)

Here the λ|Z denotes the restriction of λ to the variables in
Z and π2 denotes the projection to the second component.
The conjunction in the first line makes sure that the concept
names needed for variables of qt that are mapped to Ccore are
derived. The second line assures that for all variables of qt
that are mapped to a fresh subtree generated in the universal
model of A and O, there is actually a type t derived at the
root b ∈ Ccore that generates a suitable tree.

The following transitions are then used to check for
derivations of concept names.

For l ∈ Σε, let:

δ(sAb , l) =
∨

O|=B1u···uBnvA

〈0〉qB1

b ∧ . . . ∧ 〈0〉s
Bn

b ∨

∨
∃s.BvA∈O
O|=rvs

∨
b′∈Ccore

r(b,b′)∈B

〈0〉sBb′ ∨

∨
∃s.BvA∈O
O|=rvs

∨
1≤i≤|O|·|qt|

〈i〉sBr,b

For l ∈ ΣN and {r, b} ⊆ l let:

δ(sAr,b, l) = 〈0〉sA.
For l ∈ ΣN and r ∈ l let

δ(sAr , l) = 〈0〉sA.
For l ∈ ΣN with role r ∈ l such that l contains no constant
of Ccore, let:

δ(sA, l) =
∨

O|=B1u···uBnvA

〈0〉sB1 ∧ . . . ∧ 〈0〉sBn ∨

∨
∃s−.BvA∈O
O|=rvs

〈−1〉sB ∨

∨
∃s.BvA∈O
O|=uvs

〈1〉sBu ∨ . . . ∨ 〈|O|〉sBu

For l ∈ ΣN with {r, b} ⊆ l for a role r and b ∈ Ccore, let:

δ(sA, l) =
∨

O|=B1u···uBnvA

〈0〉sB1 ∧ . . . ∧ 〈0〉sBn ∨

∨
∃s−.BvA∈O
O|=rvs

〈−1〉sBb ∨

∨
∃s.BvA∈O
O|=uvs

〈1〉sBu ∨ . . . ∨ 〈|O|〉sBu

All pairs (s, l) ∈ S×Σε]ΣN that have not been mentioned
yet will never occur in a run on a proper tree, so for those we
just define δ(s, l) = false.

Correctness of Aλ1 . We now argue that Aλ1 accepts a tree if
and only if it encodes a tuple (A,a, p) such that Condition 1
is fulfilled.

Let Condition 1 be fulfilled. We show that the automa-
tion accepts. This entails that the homomorphism pattern λ
is compatible with the B and a that encoded in the label l
at the root node of the tree. Hence Aλ1 does not reject im-
mediately. Let h be the homomorphism from Condition 1.
Since h is a homomorphism for all variables z of qt that are
mapped to the core of A and all atoms A(z) from qt, we
have that A,O |= A(h(z)), so the conjunction (1) will suc-
ceed. For the second conjunction, consider a set of variables
Z ⊆ var(qt) described by the first conjunction when con-
sidering a core constant b. Let t be the set of concept names
derived at b in the universal model of O and A. We argue
that that (t, f) ∈ R: By the definition of λ, the homomor-
phism h maps every variable from Z either to b or to the
subtree below b. Since O is assumed to be in normal form,
the subtree generated below b only depends on t and we can
define g to be the restriction of h to Z. This function g wit-
nesses that (t, f) ∈ R. For this set t, the last conjunction
will of course succeed, since t was chosen to be the set of all
concept names derived at b.

For the other direction, let (T, L) be a proper tree that
is accepted by Aλ1 and that encodes the tuple (A,a, p). We
need to construct the homomorphism h such that Condi-
tion 1 is fulfilled. Since the automaton does not reject im-
mediately and the conjunction in (2) is fulfilled, there are
b1, . . . , bn ∈ Ccore such that the sets Zi = λ−1({bi} ×
{core, subtree}) 6= ∅ form a partition of var(qt) and for ev-
ery i there is a type ti derived at bi in the universal model
of O and A such that (ti, π2 ◦ λ|Zi

) ∈ R. The latter means
that there is a homomorphism gi from qt restricted to Zi to
the tree that is generated below bi in the universal model of
O and A. The homomorphism h is obtained by combining
the gi for all i. The second condition in the definition of Σε
guarantees that h also preserves roles between variables that
lie in different Zi.

Definition of A2. To define A2, we precompute three rela-
tions R, R′ and R′′. Let R be a relation between ABoxes
B over Ccore, disjuncts d ∈ M−(B) and functions f from
adom(B) to var(q). A triple (B, d, f) is in R if and only
if there exists a homomorphism h : d → q such that
h(b) = f(b) for all b ∈ adom(B). Let R′ be a relation
between unary mappings from M and variables from q. A
pair (ϕ(x) → A(x), y) is in R′ if and only if there is a ho-
momorphism h : ϕ(x) → q such that h(x) = y. Let R′′
be a relation between binary mappings from M and pairs
of variables from q. A triple (ϕ(x, x′) → r(x, x′), y, y′) is
in R′′ if there is a homomorphism h : ϕ(x, x′) → q such
that h(x) = y and h(x′) = y′. All three relations can be
computed in EXPTIME, since they all only check for homo-
morphisms between structures of polynomial size.



Let A2 = (S, δ,Σε ] ΣN , s0, c) where

S = {s0} ] {sby | b ∈ Ccore and y ∈ var(q)}
] {sy | y ∈ var(q)}

and c(s) = 0 for every s ∈ S, but the actual value of c(s)
does not matter since all runs of A2 on proper trees will be
finite.

For l ∈ Σε and B ∈ l and d ∈ M−(B) the disjunct
defined by the mappings in l, we define:

δ(s0, l) =
∨

f :adom(B)→var(q)
(B,d,f)∈R

∧
b∈adom(B)

∧
i∈{1,...,|Ccore|·|O|}

[i]sbf(b)

For l ∈ ΣN we define:

δ(sby, l) =

{
true if b /∈ l
〈0〉sy if b ∈ l

For l = (Θ,M, µ) ∈ ΣN and y ∈ var(q) let Y yl be the set of
all y′ ∈ var(q) such that (ϕ(x, x′) → r(x, x′), y, y′) ∈ R′′,
where ϕ(x, x′)→ r(x, x′) is the mappingM corresponding
to the unique role in Θ, and such that (ϕ(x) → A(x), y′) ∈
R′ for every concept name A ∈ Θ, where ϕ(x) → A(x) is
the mapping µ(A). Then we define:

δ(sy, l) =
∨

y′∈Y y
l

∧
i∈{1,...,|O|}

[i]sy′

Correctness of A2. We now argue that A2 accepts a tree
(T, L) if and only if it encodes a tuple (A,a, p) such that
p→ q.

Assume there is homomorphism h : p → q. We use
h to describe a run of A2 on (T, L) that traverses the tree
once from the root to the leaves. At the root, the automaton
chooses as f the restriction of h to adom(B), which is possi-
ble because (B, d, f) ∈ R. If the run is at a position (t, sy),
where t ∈ T corresponding to a constant a in A, then we
choose h(a) as y′. Because h is a homomorphism, one can
check that y′ ∈ Y yL(t). Thus, A2 accepts (T, L).

For the other direction, let (T, L) be a tree encoding a
tuple (A,a, p) that is accepted by A2. Let ρ be an accepting
run of A2 on (T, L). We obtain a homomorphism h : p→ q
by gluing together all of the following homomorphisms:
• The homomorphism from p restricted to facts generated

by facts in B to q that exists by the choice of f in the root
node.

• All homomorphisms h′ obtained as follows: Consider any
non-core fact α from A. This fact appears in the label
L(t) of some t in (T, L). Since ρ is accepting, it will visit
t in some state of the form sy and chooses y′ ∈ Y yL(t).
Because α is encoded in L(t), it follows by the definition
of Y yL(t) that there is a homomorphism from the body of
the mapping corresponding to α to q, which we choose as
h′.

The information that is passed along in the states of the au-
tomaton guarantees that all these homomorphisms can be
glued together to obtain a single homomorphism h : p→ q.

Lower Bounds for EL, Missing Details
We first give some justification of Theorem 21.
Theorem 21. (Bienvenu et al. 2016) Containment be-
tween OMQs Q1 = (O,Σ, q1) and Q2 = (O,Σ, q2) with
O an ELI-ontology, q1 an AQ, and q2 a rooted UCQ is
CONEXPTIME-hard even when

1. q2(x) uses only symbols from Σ and
2. no symbol from Σ occurs on the right-hand side of a CI

in O.
The hardness proof in (Bienvenu et al. 2016) actually pro-

duces as q2 a rooted CQ, but does not satisfy Condition 2.
However, the only exception to Condition 2 are CIs of the
form D v Cq where Cq is a specially crafted ELI-concept
that uses only symbols from Σ and is designed to ‘make the
query q2 true’, that is, whenever d ∈ CIq in an interpretation
I, then I |= q(d). It can be verified that the reduction in
(Bienvenu et al. 2016) still works when replacing the rooted
CQ q2 with the rooted UCQ q2 ∨

∨
DvCq∈O qD, where qD

is the concept D viewed as a unary CQ in the obvious way,
and then deleting all CIs of the form D v Cq from O. Ar-
guably, this modification even yields the more natural reduc-
tion, avoided in (Bienvenu et al. 2016) to ensure that q2 is a
CQ rather than a UCQ.

Towards a proof of Lemma 22, consider the OMQ Q =
(O′,S, qs) and the infinitary UCQ qr that consists of the
following CQs:

1. S(x),
2. each CQ from q(x),
3. for every tree-shaped Σ-ABox A with root a0 ∈

certQ1
(A), (A, a) viewed as a CQ.

The following is straightforward to verify. In particular, the
restriction to tree-shaped ABoxes in Point 3 is sanctioned by
Lemma 15 and it is important that q(x) uses only symbols
from Σ which cannot be derived using the ontology.
Lemma 31. qr is a rewriting of Q.

The next lemma is the core ingredient to the proof of
Lemma 22. In fact, by Theorem 6 and since M(qs) = qs
and M−(qr) = qr, qs is UCQ-expressible in S iff qr ⊆S qs.
The following lemma states that this is the case iffQ1 ⊆ Q2.
Lemma 32. Q1 ⊆ Q2 iff for every CQ p in qr, there is a
CQ p′ ∈ qs with p′ → p.
Proof. “if”. Assume that Q1 6⊆ Q2. Then there is a Σ-
ABox A and an a ∈ adom(A) such that a ∈ certQ1

(A),
but a /∈ certQ2

(A). By Lemma 15 and as already observed
in (Bienvenu et al. 2016), we can assume that A is tree-
shaped with root a. Let qA be (A, a) viewed as a CQ. Clearly
a ∈ certQ(A) and thus qA is a CQ in qr. However, from
none of the CQs in the UCQ qs there is a homomorphism
to qA. This is true for S(x) since S does not occur in qA. It
is also true for q(x) since A 6|= Q2(a) and q does not use
symbols that occur on the right-hand side of CIs in O.

“only if”. Assume that Q1 ⊆ Q2. We have to show that
for every CQ p in qr, there is a CQ p′ ∈ qs with p′ → p.
This is clear for the CQs from Points 1 and 2 of the con-
struction of qr since all of them appear as a CQ also in qs(x).



For Point 3, let A be a tree-shaped Σ-ABox with root a0 ∈
certQ1(A). From Q1 ⊆ Q2, we obtain a0 ∈ certQ2(A). Let
p be (A, a) viewed as a CQ. By Points 1 and 2 from The-
orem 21 , a0 ∈ certQ2

(A) implies a0 ∈ ansq(A) and thus
q → p and we are done. o

We now describe how the reduction can be improved to work
for EL, that is, how the ELI-ontology O′ can be replaced
with an EL-ontology. It can be verified that query Q1 from
Theorem 21 is ‘one-way’, that is,O verifies the existence of
a (homomorphic image of a) certain tree-shaped sub-ABox
from the bottom up and then Q1 makes q1 = A0(x) true at
the root when the tree-shaped ABox was found. This one-
way behaviour can be made formal in terms of derivations
of A0 by O, see (Bienvenu et al. 2016).

Assume w.l.o.g. that O is in normal form, that is, it only
contains CIs of the forms > v A, A v ⊥, A1 u · · · uAn v
B, A v ∃r.B, and ∃r.A v B where A,B,A1, . . . , An are
concept names. A derivation for a fact A0(a0) in an ABox
A with A0 ∈ NC ∪ {⊥} is a finite adom(A)× (NC ∪ {⊥})-
labeled tree (T, V ) that satisfies the following conditions:

1. V (ε) = (a0, A0);

2. if V (x) = (a,A) and neither A(a) /∈ A nor > v A ∈ O,
then one of the following holds:

• x has successors y1, . . . , yk, k ≥ 1 with V (yi) =
(a,Ai) for 1 ≤ i ≤ k and O |= A1 u · · · uAk v A;
• x has a single successor y with V (y) = (b, B) and

there is an ∃R.B v A ∈ O and a R′(a, b) ∈ A such
that O |= R′ v R;
• x has a single successor y with V (y) = (b, B) and

there is a B v ∃r.A ∈ O such that r(b, a) ∈ A and
func(r) ∈ O.

Now if A is tree-shaped, then the derivation is bottom-up if
the following condition is satisfied: if y is a successor of x
in T , V (x) = (ax, Ax), and V (y) = (ay, Ay), then ax = ay
or ay is a successor (but not a predecessor) or ax in A, that
is, ay is further away from the root of A than ax is. The
OMQ Q1 is one-way in the sense that if A is a tree-shaped
Σ-ABox with root a0 ∈ certQ1(A), then all derivations of
A0(a0) inA are bottom-up. Note that a corresponding state-
ment for Q2 makes little sense since by Conditions 1 and 2
of Theorem 21, answers to Q2 on an ABox A are indepen-
dent of O.

We can exploit the one-way property of Q1 as follows.
In the hardness proof in (Bienvenu et al. 2016), all in-
volved ontologies, signatures, and queries use only a sin-
gle role name S that is interpreted as a symmetric role, and
in fact represented via the composition r−0 ; r0 where r0 is
a fixed ‘standard’ (non-symmetric) role name. We can re-
place S with a standard role name r in O and in Σ, turn-
ing the ELI-ontologyO into an EL-ontology. The mapping
r0(x, y)→ r0(x, y) from M in the original reduction is then
replaced with r0(x, y)∧ r0(x, z)→ r(y, z); note that, in qs,
we keep the composition r−0 ; r0 from the original reduction.
We claim that, again, the following holds.

Lemma 33. Q1 ⊆ Q2 iff qs is UCQ-expressible in S.

Proof. (sketch) Let the UCQ qr be defined as before except
that the CQs from q are replaced with those from M(q). It
can be verified that qr is a rewriting of Q = (O′,S,M(qs)).
Moreover, it is easy to see that M−(M(q)) = q. This
and the fact that Q1 is one-way can be used to verify that
M−(qr) is identical to the query qr from the original reduc-
tion (the one-way property is needed to see that the CQs
from Point 3 of the definition of qr are identical in both
cases, except that S is replaced with r). We therefore get
from Lemma 32 that

(∗) Q1 ⊆ Q2 iff for every CQ p in M−(qr), there is a CQ
p′ ∈ qs with p′ → p.

By Theorem 6 qs is UCQ-expressible in S iff M−(qr) ⊆S

qs. By (∗), this is the case iff Q1 ⊆ Q2. o

Now for Point 2 of Theorem 20. We identify a suitable
containment problem proved 2EXPTIME in (Bienvenu et al.
2016) and then proceed very similarly to the case of Point 1.

Theorem 34. (Bienvenu et al. 2016) Containment between
OMQs Q1 = (O,Σ, q1) and Q2 = (O,Σ, q2) with O an
ELI-ontology, q1 of the form ∃xA0(x), and q2 a UCQ is
2EXPTIME-hard even when

1. q2(x) uses only symbols from Σ

2. no symbol from Σ occurs on the right-hand side of a CI
in O;

3. all occurrences of ⊥ in O are of the form C v ⊥ where
C is an ELI-concept in signature Σ.

Again, the actual hardness proof from (Bienvenu et al.
2016) needs to be slightly modified to actually achieve what
is stated in Theorem 34. In particular, CIs of the form
D v Cq again have to be turned into additional disjuncts
of the UCQ q2. This requires an additional modification of
the reduction since there are CIs of the form D v Cq where
D uses symbols that are not from Σ and occur on the right-
hand side of CIs inO. In a nutshell and speaking in terms of
the notation from (Bienvenu et al. 2016), the concept names
H and W ′ need to be added to Σ and their presence at the
intended places must be ‘verified in the input’ rather than
‘enforced by the ontology’. After this is done, the only (mi-
nor) problem remaining is that the concept name G is used
(exactly twice) in a (single) CQ p in q2, but it does occur
on the right-hand side of two CIs which are G1 v G and
G2 v G. Here, G1, G2 are from Σ and do not occur on the
right-hand side of a CI. This can be fixed by replacing pwith
four CQs in the UCQ q2, replacing the two occurrences of
G with G1 or G2 in all possible ways.

Point 2 of Theorem 20 is again first proved for
[ELI,GAV] instead of for [EL,GAV]. This is done by re-
duction from the containment problem in Theorem 34. Let
Q1 = (O,Σ, A0(x)) and Q2 = (O,Σ, q). We define an
OBDA-specification S = (O′,M,S) and a query qs() over
S as follows. Let B be a concept name that does not occur
in Q1 and Q2. Set

O′ = O ∪ {A0 v B}
S = Σ ∪ {B}

qs() = ∃xB(x) ∨ q()



The set M of mappings again contains A(x) → A(x) for
all concept names A ∈ S and r(x, y) → r(x, y) for all
role names r ∈ S. The proof of the following is essentially
identical to the CONEXPTIME case and omitted.
Lemma 35. Q1 ⊆ Q2 iff qs is UCQ-expressible in S.

The approach to eliminating inverse roles is also ex-
actly identical to the CONEXPTIME case. In fact, the OMQ
(O,Σ, A0(x)) is again one-way and all involved ontologies,
signatures and queries again only use the single symmetric
role name S represented as the composition r−0 ; r0. Conse-
quently, the same arguments apply.

Proof of Undecidability Result
Theorem 23. In [ALCF ,GAV], the AQ-to-Q expressibil-
ity and verification problems are undecidable for any Q ∈
{AQ,CQ,UCQ}.
Proof. We provide a reduction from the emptiness of AQs
w.r.t.ALCF-ontologies, which is undecidable (Baader et al.
2016). Thus let (O,S, A0) be an OMQ with O in ALCF
and A0(x) an AQ. Let B0 be a fresh concept name and de-
fine an OBDA-specification S = (O′,M,S′) where O′ =
O ∪ {A0 v B0}, S′ = S ∪ {B0}, and M consists of the
mappings A(x) → A(x) for all concept names A in S′ and
r(x, y)→ r(x, y) for all role names r in S′. We consider ex-
pressibility of the AQ B0(x). In fact, it is possible to verify
the following:

1. if A0 is empty w.r.t. O, then B0(x) is a realization of
B0(x) in S;

2. if A0 is non-empty w.r.t. O, then there is a S-database D
and a constant a ∈ adom(D) such that a ∈ certQ(D).
Define the S′-database D′ = D ∪ {B0(a)}. Now,
B0(x) is not determined in S in the sense that a ∈
ansB0(D′) \ ansB0(D) but every model of M(D) and
O′ is also a model of M(D′) and O′, and vice versa.
Consequently, B0(x) is not Q-expressible in S for any
Q ∈ {AQ,CQ,UCQ} or, in fact, any other query lan-
guage.

o


