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Abstract9

Many algorithmic results on the modal mu-calculus use representations of formulas such as alternating10

tree automata or hierarchical equation systems. At closer inspection, these results are not always11

optimal, since the exact relation between the formula and its representation is not clearly understood.12

In particular, there has been confusion about the definition of the fundamental notion of the size of13

a mu-calculus formula.14

We propose the notion of a parity formula as a natural way of representing a mu-calculus formula,15

and as a yardstick for measuring its complexity. We discuss the close connection of this concept16

with alternating tree automata, hierarchical equation systems and parity games. We show that17

well-known size measures for mu-calculus formulas correspond to a parity formula representation of18

the formula using its syntax tree, subformula graph or closure graph, respectively. Building on work19

by Bruse, Friedmann & Lange we argue that for optimal complexity results one needs to work with20

the closure graph, and thus define the size of a formula in terms of its Fischer-Ladner closure. As a21

new observation, we show that the common assumption of a formula being clean, that is, with every22

variable bound in at most one subformula, incurs an exponential blow-up of the size of the closure.23

To realise the optimal upper complexity bound of model checking for all formulas, our main24

result is to provide a construction of a parity formula that (a) is based on the closure graph of a25

given formula, (b) preserves the alternation-depth but (c) does not assume the input formula to be26

clean.27
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1 Introduction37

The modal µ-calculus, introduced by Kozen [14] and surveyed in for instance [2, 12, 4, 9],38

is a logic for describing properties of processes that are modelled by labelled transition39

systems. It extends the expressive power of propositional modal logic by means of least and40

greatest fixpoint operators. This addition permits the expression of all bisimulation-invariant41

monadic second order properties of such processes [13]. As a logic, µML has many desirable42

properties, such as a natural complete axiomatisation [14, 19], uniform interpolation and43
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other interesting model-theoretical properties [8, 11], and a complete cut-free proof system [1].44

Here we will be interested in some of its computational properties.45

The µ-calculus is generally regarded as a universal specification language for reactive46

systems, since it embeds most other logics that are used for this purpose, such as ltl, ctl,47

ctl∗ and pdl. Given this status, the computational complexity of its model checking and48

satisfiability problems is of central importance. While the satisfiability problem has been49

shown to be exptime-complete [10] already thirty years ago, the precise complexity of50

its model checking problem turned out to be a challenging problem. A breakthrough was51

obtained by Calude et alii [7] who gave a quasi-polynomial algorithm for deciding parity52

games; since model checking for the modal µ-calculus can be determined by such games, this53

indicates a quasi-polynomial upper bound of the complexity of the model checking problem.54

Generally, to determine the complexity of a proposed algorithm operating on µ-calculus55

formulas, one needs sensible measures of the complexity of the formula that is (part of)56

the input to the algorithm; the most important of these concern size and alternation depth.57

Different notions of size have been used, depending on how precisely formulas are represented58

in the input. Standard size measures include: (1) length, corresponding to a representation of59

the formula as a string or syntax tree; (2) subformula size, corresponding to a representation of60

the formula as the directed acyclic graph of its subformulas; and (3) closure size, corresponding61

to a similar representation of a formula via its (Fischer-Ladner) closure.62

The choice between these representations is non-trivial because the subformula size63

of a formula may be exponentially smaller than its length, and, as was shown by Bruse,64

Friedmann & Lange [6], its closure size may be exponentially smaller than its subformula size.65

Consequently, complexity results about the µ-calculus may be suboptimal when expressed66

in terms of subformula size, in the sense that a stronger version of the result holds when67

formulated in terms of closure size. In other words, it is desirable to design algorithms that68

operate on a representation of a formula that is based on its closure.69

At closer inspection it turns out that generally, the literature on algorithmic aspects of the70

µ-calculus is crystal clear in terms of the structures on which the algorithms operate, but less71

so on the precise way in which these structures represent formulas. As a consequence, when72

formulated in terms of the actual formulas, complexity results as given may be suboptimal or73

somewhat fuzzy. Our long-term goal is to study the representation of µ-calculus formulas in74

more detail, and to develop a framework in which various approaches can easily be compared,75

and in which complexity results can be formulated and proved optimally and unambiguously.76

As a starting point, we note that in the literature different frameworks are used to77

represent µ-calculus formulas. The parity games that feature in model checking algorithms78

are usually based on an arena which is some kind of Cartesian product of a graph that79

represents the formula with the model where this formula is evaluated. Other prominent ways80

to represent formulas are (alternating) tree automata and (hierarchical) equation systems; as81

we shall see further on, in these cases we can think of the structures that represent formulas82

in graph-theoretic terms as well. In all cases then, the mathematically fundamental structure83

representing a formula is a graph, whose nodes are labelled with logical connectives or84

atomic formulas, and with priorities that are used to determine some winning or acceptance85

condition. The graph itself can be based on the syntax tree, the subformula dag or the86

closure graph of the formula that it represents.87

We make this fundamental labelled graph structure explicit and call the resulting concept88

a parity formula.1 Intuitively, parity formulas generalise standard formulas by dropping the89

1 Parity formulas are almost the same structures as the alternating binary tree automata of Emerson &
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requirement that the underlying graph structure of the formula is a tree with back edges,90

and adding an explicit parity acceptance condition. A good way to think about a parity91

formula is as the formula component of a model checking game. As we shall see below,92

parity formulas are closely related to alternating tree automata and hierarchical equation93

systems. Compared to these however, parity formulas have a very simple mathematical94

structure, which allows for a straightforward and unambiguous definition of its size and its95

index (alternation depth).96

The explicit introduction of this notion is not a goal in itself. We intend to use it as a97

tool to analyse some underexposed sides of the theory of the modal µ-calculus. In this paper98

we discuss some key constructions turning standard formulas into parity formulas and vice99

versa. Along the way we make two observations that we consider the key contributions of100

this paper:101

1) A common assumption in the literature on the µ-calculus is that one may assume,102

without loss of generality, that formulas are clean or well-named, in the sense that bound103

variables are disjoint from free variables, and each bound variable determines a unique104

subformula. In Proposition 10 we show that this assumption may lead to an exponential105

blow-up in terms of closure-size. This means that, if one is interested in optimal complexity106

results, one should not assume the input formula to be clean.107

2) To the best of our knowledge, all representations of µ-calculus formulas known from108

the literature, are suboptimal in one way or another: they are based on the subformula dag,109

they presuppose cleanness, or they use a priority function which yields an unnecessarily big110

index. The main result of our paper, Theorem 12, concerns a construction that provides, for111

every µ-calculus formula, an equivalent parity formula that is based on its closure graph,112

and has an index that matches its alternation depth. The fact that we do not assume the113

input formula to be clean makes our proof non-trivial.2114

Because of Proposition 10, Theorem 12 has an impact on the quasi-polynomial time115

complexity of the model checking problem for the modal µ-calculus. If one wants to formulate116

an optimal version of this complexity result, by the observations of Bruse, Friedmann &117

Lange [6] one needs to measure the formula in terms of closure-size; but then Theorem 12 is118

needed to ensure that the result applies to all formulas, not just to the ones that are clean.119

2 Preliminaries120

In this section we briefly review the syntax and semantics of the modal µ-calculus.121

Syntax It will be convenient to assume that µ-calculus formulas are in negation normal122

form. That is, the formulas of the modal µ-calculus µML are given by the following grammar:123

µML ∋ φ ::= p | p | ⊥ | ⊤ | (φ ∨ φ) | (φ ∧ φ) | 3φ | 2φ | µxφ | νxφ,124

where p, x are variables, and the formation of the formulas µxφ and νxφ is subject to the125

constraint that φ is positive in x, i.e., there are no occurrences of x in φ. Elements of µML126

will be called µ-calculus formulas or standard formulas. Formulas of the form µx.φ or νx.φ127

will be called fixpoint formulas. We define Lit(Q) := {p, p | p ∈ Q} as the set of literals over128

Q, and At(Q) := {⊥,⊤} ∪ Lit(Q) as the set of atomic formulas over Q. We will associate µ129

Jutla [10] and as the version of Wilke’s alternating tree automata where the transition conditions are
basic formulas, i.e., contain at most one logical connective [20, 12].

2 Proof details, which we could not include here for lack of space, can be found in the technical report [15].
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and ν with the odd and even numbers, respectively, and for η ∈ {µ, ν} define η by putting130

µ := ν and ν := µ. The notion of subformula is defined as usual; we write φ P ψ if φ is a131

subformula of ψ, and define Sfor(ψ) as the set of subformulas of ψ.132

We use standard terminology related to the binding of variables. We write BV (ξ) and133

FV (ξ) for, respectively, the set of bound and free variables of a formula ξ. A formula ξ is134

tidy3 if FV (ξ) ∩ BV (ξ) = ∅. We fix a set Q of proposition letters and let µML(Q) denote135

the set of formulas ξ with FV (ξ) ⊆ Q. We let φ[ψ/x] denote the formula φ, with every136

free occurrence of x replaced by the formula ψ; we will make sure that we only apply this137

substitution operation if ψ is free for x in φ (meaning that no free variable of ψ gets bound138

after substituting). This saves us from involving alphabetical variants when substituting.139

The unfolding of a formula ηx.χ is the formula χ[ηx.χ/x]; this formula is tidy if χ is so.140

Semantics The modal µ-calculus is interpreted over Kripke structures. A (Kripke) model is141

a triple S = (S,R, V ) where S is the set of states or points of S, R ⊆ S × S is its accessibility142

relation, and V : Q → P(S) its valuation. A pointed model is a pair (S, s) where s is a143

designated state of S. Inductively we define the meaning [[φ]]S ⊆ S of a formula φ ∈ µML(Q)144

in a model S as follows:145

[[p]]S := V (p) [[p]]S := S \ V (p)
[[⊥]]S := ∅ [[⊤]]S := S

[[φ ∨ ψ]]S := [[φ]]S ∪ [[ψ]]S [[φ ∧ ψ]]S := [[φ]]S ∩ [[ψ]]S
[[3φ]]S := {s ∈ S | R[s] ∩ [[φ]]S ̸= ∅} [[2φ]]S := {s ∈ S | R[s] ⊆ [[φ]]S}
[[µx.φ]]S :=

⋂
{U ⊆ S | [[φ]]S[x 7→U ] ⊆ U} [[νx.φ]]S :=

⋃
{U ⊆ S | [[φ]]S[x 7→U ] ⊇ U}.

146

Here S[x 7→ U ] := (S,R, V [x 7→ U ] where V [x 7→ U ] is the Q ∪ {x}-valuation mapping x to147

U and any p ̸= x to V (p). If a state s ∈ S belongs to the set [[φ]]S, we write S, s ⊩ φ, and say148

that s satisfies φ.149

Complexity measures The size of a formula ξ ∈ µML can be measured in at least three150

different ways. First, its length |ξ|ℓ is defined as the number of symbols that occur in ξ.151

Second, we define its subformula size |ξ|s := |Sfor(ξ)| as the number of distinct subformulas152

of ξ.153

Third, we can measure the size of ξ by counting the number of formulas in its (Fischer-154

Ladner) closure. We need some notation and terminology here, where we assume that ξ is155

tidy. The set Clos0(ξ) is defined by the following case distinction:156

Clos0(φ) := ∅ if φ ∈ At(Q)
Clos0(φ0 ⊙ φ1) := {φ0, φ1} where ⊙ ∈ {∧,∨}
Clos0(♡φ) := {φ} where ♡ ∈ {3,2}
Clos0(ηx.φ) := {φ[ηx.φ/x]} where η ∈ {µ, ν}.

157

We write ξ →C φ if φ ∈ Clos0(ξ) and call →C the trace relation on µML. We let ↠C158

denote the reflexive and transitive closure of →C , and define the closure of ξ as the set159

Clos(ξ) := {φ | ξ ↠C φ}. The closure graph of ξ is the directed graph (Clos(ξ),→C). The160

closure size |ξ|c of ξ is given as |ξ|c := |Clos(ξ)|.161

3 In the literature, some authors make a distinction between proposition letters (which can only occur
freely in a formula), and propositional variables, which can be bound. Our tidy formulas correspond to
sentences in this approach, that is, formulas without free variables.
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Next to its size, the most important complexity measure of a µ-calculus formula is its162

alternation depth. We shall work with the definition originating with Niwiński [16]. By163

natural induction we first define classes Θµ
n,Θν

n ⊆ µML (corresponding to, respectively, the164

sets Πn+1 and Σn+1 in [16]). Intuitively, Θη
n consists of those µ-calculus formulas where165

n bounds the length of any alternating nesting of fixpoint operators of which the most166

significant formula is an η-formula. For the definition, we set, for η, λ ∈ {µ, ν}:167

1. all atomic formulas belong to Θη
0 ;168

2. if φ0, φ1 ∈ Θη
n, then φ0 ∨ φ1, φ0 ∧ φ1,3φ0,2φ0 ∈ Θη

n;169

3. if φ ∈ Θη
n then ηx.φ ∈ Θη

n (where we recall that µ = ν and ν = µ);170

4. if φ(x), ψ ∈ Θη
n, then φ[ψ/x] ∈ Θη

n, provided that ψ is free for x in φ;171

5. all formulas in Θλ
n belong to Θη

n+1.172

The alternation depth ad(ξ) of a formula ξ is the least n such that ξ ∈ Θµ
n ∩ Θν

n. It measures173

the maximal number of alternations between least and greatest fixpoint operators in ξ.174

3 Representations of µ-calculus formulas175

In this section we discuss two of the most widely used representations for formulas of the176

modal µ-calculus that one may find in the literature: alternating tree automata (atas) and177

hierarchical equation systems (hess). Both of these come in many different shapes, and in178

some of these shapes the two notions are actually very similar to one another. For lack of179

space we cannot give a proper survey here, and so we focus on a perspective, in which these180

similarities come out most clearly.4 In this perspective, both kinds of representation can be181

defined using the syntactic notion of a transition condition. Recall that we have fixed a set Q182

of proposition letters; in addition to this we need a set A of objects that we shall call states183

in the setting of atas and variables in that of hess. Now consider the following definitions184

of, respectively, the sets of basic, standard and extended transition conditions over Q and A.185

BTC(Q, A) ∋ β ::= ⊥ | ⊤ | p | p | a | 3a | 2a | a ∧ a | a ∨ a,

STC(Q, A) ∋ β ::= ⊥ | ⊤ | p | p | a | 3a | 2a | β ∧ β | β ∨ β,

ETC(Q, A) ∋ β ::= ⊥ | ⊤ | p | p | a | 3β | 2β | β ∧ β | β ∨ β,

186

where p ∈ Q and a ∈ A.187

▶ Definition 1. An alternating tree automaton or ata is a quadruple A = (A,∆,Ω, aI)188

where A is a non-empty finite set of states, of which aI ∈ A is the initial state, Ω : A → ω189

is the priority map, and ∆ : A → STC(Q, A) is the transition map. An ata will be called190

basic if the range of its transition map consists of basic transition conditions.191

Before we move on to the definition of the semantics of atas, we make two comments.192

First and foremost, the atas that were introduced by Wilke [20] are in fact what we call193

basic; as we shall see in the next section, these are the ones that are in close correspondence194

with our parity formulas. In the subsequent literature however, it seems to have become195

quite common to allow for the more complex conditions that we here call ‘standard’, and196

that may feature nesting of boolean connectives in transition conditions, (possibly restricted197

to disjunctive normal form).198

4 This means in particular that we only consider amorphous tree automata here, i.e., we disregard
automata operating on trees where the children of a node are given by a bounded number of functions.
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Second, if we think of the powerset P(Q) as an alphabet, then tree-based Kripke models199

correspond to P(Q)-labelled trees. In such a setting it is common to consider tree automata200

with a transition map of the form ∆ : A × P(Q) → TC(∅, A) for some set of transition201

conditions in which the proposition letters in Q may not occur. That is, the proposition202

letters in Q move from the co-domain of the transition map to its domain. It is in fact quite203

easy to transform automata of the one kind into devices of the other kind, but for lack of204

space we cannot go into detail here.205

The semantics of alternating tree automata is usually given in terms of run trees, but we206

may also use parity games [12, ch. 9]. A simple version is the acceptance game A(A,S) for an207

ata A and a model S = (S,R, V ); it takes positions in the set VA × S, where VA is given as208

VA := {aI} ∪
⋃
a∈A

Sfor(∆(a)).209

For each of these positions Table 1 below lists the set of possible moves and the player that is210

to move. (We need not assign a player to positions that admit a single move only.) As usual211

in parity games finite matches are lost by the player who gets stuck (i.e., needs to pick an212

element from the empty set) and infinite matches are won by ∃ iff the maximal priority Ω(a)213

of all positions (a, s) ∈ A× S that occur infinitely often in the match is even. The starting214

position is (aI , s), with (S, s) the pointed model for which we want to check acceptance.

Position Player Admissible moves
(⊥, s) ∃ ∅
(⊤, s) ∀ ∅
(p, s) for s ∈ V (p) ∀ ∅
(p, s) for s ̸∈ V (p) ∃ ∅
(p, s) for s ∈ V (p) ∃ ∅
(p, s) for s ̸∈ V (p) ∀ ∅
(a, s) for a ∈ A - {(∆(a), s)}
(α0 ∨ α1, s) ∃ {(α0, s), (α1, s)}
(α0 ∧ α1, s) ∀ {(α0, s), (α1, s)}
(3a, s) ∃ {(a, t) | sRt}
(2a, s) ∀ {(a, t) | sRt}

Table 1 The acceptance game A(A, S)

215

As a second way of representing µ-calculus formulas we now discuss hierarchical equation216

systems [18, 6]. As with alternating tree automata there are multiple definitions of hierarchical217

equation systems in the literature. Here we recall the definition from [9] (where they are218

called modal equation systems).219

▶ Definition 2. A hierarchical equation system or hes consists of a finite set of variables220

A = {X1, . . . , Xn}, together with a set221

E = {X1 =p1 β1, . . . , Xn =pn
βn}.222

of prioritised modal equations. That is, for each i, the number pi ∈ ω denotes the priority of223

the i-th equation, and βi is an expression in the set ETC(Q, A).224

By convention the first variable X1 is the entry point of the equation system, which225

functions similarly to the initial state of an ata. In [18, 6] the semantics of hierarchical226
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equation systems is defined on the basis of the Knaster-Tarski fixpoint theorem, as in the227

compositional semantics of standard formulas defined in Section 2. It is however also possible228

to give a semantics in terms of parity games, completely analogous to the game semantics229

for atas mentioned above. We leave the details to the reader.230

It is clear that there is a close correspondence between hierarchical equation systems and231

alternating tree automata. In fact one might view an hes as a generalised version of an ata232

in which modalities can be nested inside of the transition conditions — such a generalised233

notion of ata has been used for example in [5]. With this in mind, in the sequel we will take234

this generalised perspective on atas, so that we include hess when we refer to atas.235

It is not entirely obvious what is the right measure for the size of an alternating tree236

automaton A = (A,∆,Ω, aI). One might simply consider the number of states in A, but since237

any actual representation of the automaton needs to encode the arbitrarily large transition238

conditions a more adequate measure of the size of A should take these into account as well.239

Moreover, since the acceptance game A(A,S) is based on the set VA × S, it makes sense to240

define |A| := |VA|, but also, to consider a representation of A that is more directly based on241

this set VA. This is what we will do in the next section.242

4 Parity formulas243

As the backbone of our framework we introduce the notion of a parity formula. These are244

like ordinary (modal) formulas, with the difference that (i) the underlying structure of a245

parity formula is a directed graph, possibly with cycles, rather than a tree; and (ii) one adds246

a priority labelling to this syntax graph, to ensure a well-defined game-theoretical semantics247

in terms of parity games.248

▶ Definition 3. A parity formula over Q is a quintuple G = (V,E,L,Ω, vI), where249

(V,E) is a finite, directed graph, with |E[v]| ≤ 2 for every vertex v;250

L : V → At(Q) ∪ {∧,∨,3,2, ϵ} is a labelling function;251

Ω : V ◦→ ω is a partial map, the priority map of G; and252

vI is a vertex in V , referred to as the initial node of G;253

such that (with E[v] := {u ∈ V | Evu}):254

1. |E[v]| = 0 if L(v) ∈ At(Q), and |E[v]| = 1 if L(v) ∈ {3,2} ∪ {ϵ};255

2. every cycle of (V,E) contains at least one node in Dom(Ω).256

A node v ∈ V is called silent if L(v) = ϵ, constant if L(v) ∈ {⊤,⊥}, literal if L(v) ∈ Lit(Q),257

atomic if it is either constant or literal, boolean if L(v) ∈ {∧,∨}, and modal if L(v) ∈ {3,2}.258

The elements of Dom(Ω) will be called states.259

The semantics of parity formulas is given in terms of a model checking game, which is260

defined as the following parity game between ∃ and ∀.261

▶ Definition 4. Let S = (S,R, V ) be a model, and let G = (V,E, L,Ω, vI) be a parity formula.262

We define the model checking game E(G,S) as the parity game (G,E,Ω′) of which the board263

(or arena) consists of the set V × S, the priority map Ω′ : V × S → ω is given by putting264

Ω′(v, s) := Ω(v) if v ∈ Dom(Ω) and Ω′(v, s) := 0 otherwise. and the game graph is given in265

Table 2. G holds at or is satisfied by the pointed model (S, s), notation: S, s ⊩ G, if the pair266

(vI , s) is a winning position for ∃ in E(G,S).267
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Position Player Admissible moves
(v, s) with L(v) = p and s ∈ V (p) ∀ ∅
(v, s) with L(v) = p and s /∈ V (p) ∃ ∅
(v, s) with L(v) = p and s ∈ V (p) ∃ ∅
(v, s) with L(v) = p and s /∈ V (p) ∀ ∅
(v, s) with L(v) = ϵ - E[v] × {s}
(v, s) with L(v) = ∨ ∃ E[v] × {s}
(v, s) with L(v) = ∧ ∀ E[v] × {s}
(v, s) with L(v) = 3 ∃ E[v] × R[s]
(v, s) with L(v) = 2 ∀ E[v] × R[s]

Table 2 The model checking game E(G, S)

ϵ|1

∨

ϵ|0

∧

2

∨

yx

q

∨

3p

Figure 1 Example of a parity formula

Equivalence of parity formulas, and between parity268

formulas and standard formulas (or atas or hess), is269

defined in the obvious way.270

▶ Example 5. Figure 1 to the right displays an ex-271

ample of a parity formula that is based on the stand-272

ard µ-calculus formula ξ = µx.(p∨3x)∨νy.(q∧2(x∨273

y)), by adding back edges to the subformula dag of ξ.274

Nodes in the domain of the priority map are indicated275

by the notation ·|n, where n is the priority. The initial276

node is ϵ|1.277

▶ Example 6. One can also build a parity formula278

from the closure graph of some standard µ-calculus279

formula. As an example we consider the formula ξ2280

from our proof of Proposition 10 in Section 5:281

ξ2 := µx0.γ2 ∧ (γ1 ∧ x0),282

where283

γ1 := µx1.x1 ∧ (µx0.γ2 ∧ x1 ∧ x0), and284

γ2 := µx2.x2 ∧
(
(µx1.x1 ∧ (µx0.x2 ∧ x1 ∧ x0))285

∧ (µx0.x2 ∧ (µx1.x1 ∧ (µx0.x2 ∧ x1 ∧ x0)) ∧ x0)
)
.286

287

A picture of the closure graph (Clos(ξ2),→C) of ξ2 is on the left in Figure 2 below (where288

γ2 is represented by γ0). This closure graph gives rise to a parity formula whose vertices289

are the elements of Clos(ξ2) and edges are given by the trace relation →C . The labelling is290

obvious and the initial node is the node ξ2 = γ0. The priority map Ω can be defined such291

that Ω(γ0) = Ω(γ1) = Ω(γ2) = 1 and Ω is undefined on all other vertices.292

We impose a bound on the outdegree of vertices in parity formulas, so that the size of any293

reasonable encoding of a parity formula is linear in the number of vertices. This facilitates294

the following simple definition of size:295

▶ Definition 7. The size of a parity formula G = (V,E,L,Ω, vI) is defined as its number of296

nodes: |G| := |V |.297
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The second fundamental complexity measure for a parity formula is its index, which298

corresponds to the alternation depth of standard formulas. The most straightforward299

definition of this notion would be to take the size of the range of the priority map; a slightly300

more sophisticated approach5 involves the notions of an alternating Ω-chain and of a cluster301

(or maximal strongly connected component) of G302

▶ Definition 8. Let G = (V,E, L,Ω, vI) be a parity formula.303

A set C ⊆ V is a cluster in G if C is a maximal set such that E∗uv and E∗vu for all304

u, v ∈ C. Clusters are partially ordered by placing one cluster C higher than another cluster305

C ′ if E∗uu′ for all u ∈ C and u′ ∈ C ′. A cluster C in G is degenerate if C = {v} is a306

singleton and we do not have Evv; otherwise, C is called nondegenerate.307

An alternating Ω-chain of length k in G is a finite sequence v1 · · · vk of states that308

all belong to the same cluster, and satisfy, for all i < k, that Ω(vi) < Ω(vi+1) while vi309

and vi+1 have different parity. Such a chain is called an µ-chain (ν-chain) if Ω(vk) is310

odd (even, respectively). Given a cluster C of G and η ∈ {µ, ν} we define indη(C), the311

η-index of C, as the maximal length of an alternating η-chain in C, and the index of C as312

indG(C) := max
(
indµ(C), indν(C)

)
. Finally, we define313

ind(G) := max{indG(C) | C ∈ Clus(G)}.314

Note that if G has cycles then Dom(Ω) ̸= ∅, so that G has alternating chains. If G is315

cycle-free then we can assume that Dom(Ω) is empty, in which case ind(G) = 0.316

Parity formulas, alternating tree automata and hierarchical equation systems317

It should be clear from the definitions that parity formulas are very similar to both alternating318

tree automata and hierarchical equation systems. To transform a given ata A = (A,∆,Ω, aI)319

into an equivalent parity formula GA = (V,E, L,Ω′, vI), one just builds a graph on the320

set VA in the obvious way, and defines Ω′ := Ω (with the understanding that Ω′ is now a321

partial map on V ), and vI := aI . Finally, one defines L(a) := ϵ if a ∈ A, whereas L(α)322

for α ∈ STC(Q, A) \ A is given as L(α) := α in case α is atomic, and L(α) is the main323

connective of α otherwise. It is then straightforward to show that A ≡ GA, whereas GA324

obviously has the same size as A. In the opposite direction, it is as straightforward to define,325

for an arbitrary parity formula G, an equivalent basic ata A of the same size and index.326

Parity formulas, then, can be seen as a definitional variation of atas or hess. We prefer327

the graph-based format of parity formulas, since this shows more clearly how to generalise328

standard formulas, and allows for very perspicuous definitions of complexity measures. What329

matters most, however, is that the results that we prove in the next two sections apply to330

atas and hess, in the same way as to parity formulas, see for instance Remark 11 where we331

make this point explicit.332

5 Size issues333

It follows from our observations in the previous paragraphs that we may solve the model334

checking problem for the modal µ-calculus by transforming an arbitrary formula ξ ∈ µML into335

an equivalent parity formula G, and then use the model checking game for parity formulas,336

5 Note that these two definitions almost coincide, since we may shift the priorities of any cluster to either
0, . . . , d or 1, . . . , d + 1.
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together with an algorithm for solving parity games.6 While the complexity of solving337

parity games is still not exactly understood, there is no doubt that the key parameters that338

determine this complexity are the size and the index of the game. Thus, given the definition339

of the model checking game for parity formulas, it is of crucial importance to find, for an340

arbitrary µ-calculus formula ξ, an equivalent parity formula G of minimal size and index.341

While Kozen [14] already showed that the closure set Clos(ξ) of a clean µ-calculus formula ξ342

never exceeds the number of subformulas of ξ, Bruse, Friedmann & Lange [6] revealed that343

Clos(ξ) can in fact be exponentially smaller than Sfor(ξ) of its subformulas. This difference344

in size indicates that for optimal complexity results, rather than building a parity formula345

for ξ on the set Sfor(ξ), one should work with the closure graph of ξ.346

In the next section we will give a concrete definition of such a parity formula. Here we347

point out a complication in this definition that seems to have gone unnoticed until now; it348

concerns the notion of a formula being clean or well-named.349

▶ Definition 9. A tidy µ-calculus formula ξ is clean or well-named if we may associate350

with each x ∈ BV (ξ) a unique subformula of the form ηx.δ. This unique subformula will be351

denoted as ηxx.δx, and we call x a µ-variable if ηx = µ, and a ν-variable if ηx = ν.352

It is generally very convenient to work with clean formulas, since the bound variables of353

a clean formula are in 1-1 correspondence with its fixpoint subformulas.7 For this reason354

one often sees in the literature that authors assume that the formulas they work with are355

clean. It is easy to rewrite a µ-calculus formula into an equivalent clean variant, by a suitable356

renaming of bound variables. The problem, however, is that such a renaming comes at a357

high cost, as is stated by the following proposition.358

▶ Proposition 10. There exists a family ξ1, ξ2, . . . of formulas in µML such that |ξn|c ≤ 2n+2,359

but |ψn|c ≥ 2n for every clean alphabetic variant ψn of ξn.360

Proof. Fix a number n. The formula ξn is defined in terms of simpler families of formulas361

βi, γi for all i ∈ {0, . . . , n} and αi,j for all i, j ∈ {0, . . . , n} with j ≤ i. First we define βi by362

an induction on i ≤ n:363

β0 := µx0.xn ∧ · · · ∧ x0364

βi := µxi.αi,i ∧ · · · ∧ αi,0,365

where αi,j for j ≤ i is defined by an inner downwards induction such that αi,i := xi and for366

all j with 0 ≤ j < i we set367

αi,j := βj [αi,i/xi] · · · [αi,j+1/xj+1].368

Note that FV (βi) ⊆ {xn, . . . , xi+1} and FV (αi,j) ⊆ {xn, . . . , xi} for all j ≤ i. In the369

definition of βi and the remainder of this section we assume that conjunction associates to370

the right. We then define γi with a downwards induction on i such that371

γi := βi[γn/xn] · · · [γi+1/xi+1].372

Finally, we set ξn := γ0. Figure 2 depicts the closure graphs for ξ2 and ξ3. The formula ξ2 is373

given in Example 6. The formula ξ3 is already too large to be written out.374

6 Because the correspondence between parity formulas and atas and hess, this is the standard way of
approaching model checking for µML.

7 In some situations it is even necessary to work with clean formulas. Suppose, for instance, that for a
formula ξ ∈ µML one wants to base an equivalent ata Aξ on the set of subformulas of ξ. If we cannot
associate a unique subformula of ξ with some bound variable x of ξ, then there is no sensible way to
define the value of the transition map for this x.
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γ0

γ1 γ2

γ1 ∧ γ0 γ2 ∧ (γ1 ∧ γ0)

γ0

γ1 γ2 γ3

γ1 ∧ γ0 γ2 ∧ (γ1 ∧ γ0) γ3 ∧ (γ2 ∧ (γ1 ∧ γ0))

Figure 2 Structure of the closure graphs for ξ2 (represented by γ0 in the left graph) and for ξ3

(represented by γ0 in the right graph).

To show that |ξn|c ≤ 2n+ 2 one needs to verify that375

Clos(ξn) = {γ0, . . . , γn, γ1 ∧ γ0, γ2 ∧ (γ1 ∧ γ0), . . . , γn ∧ · · · ∧ γ0}.376

The crucial observation behind this result is that for all j ≤ i it holds that377

αi,j [γn/xn] · · · [γi+1/xi+1][γi/xi] = γj .378

This equation can be proved by a downward induction over j ∈ {i, . . . , 0} for every fixed i.379

To prove the result on the closure size of clean renamings of ξn we use the notion of fixpoint380

depth. Inductively we define fd(φ) := 0 if φ is atomic, fd(φ0 ⊙ φ1) := max(fd(φ0), fd(φ1)),381

fd(♡φ) := fd(φ), and fd(ηx.φ) := 1 + fd(φ). As we sketch below one can then show that382

fd(ξn) ≥ 2n. (1)383

To see how the claim about clean alphabetic variants follows from (1) let ψn be some clean384

alphabetical variant of ξn; it is not hard to see that we have fd(ψn) ≥ 2n as well. The claim385

then follows by the observation that386

every clean µ-calculus formula χ satisfies |χ|c ≥ fd(χ). (2)387

For a proof of this statement, first observe that for any subformula ηx.φ P χ, the closure of388

χ contains a formula of the form ηx.φ′. This implies that |χ|c = |Clos(χ)| ≥ |BV (χ)|. But if389

χ is a formula of fixpoint depth k, then there is a chain of subformulas η1x1.φ1 P η2x2.φ2 P390

· · · P ηkxk.φk, and if χ is clean, then all these variables xi must be distinct. This shows that391

|BV (χ)| ≥ fd(χ). Combining these observations, we see that |χ|c ≥ fd(χ) indeed.392

To prove (1) we need the auxiliary notion of the fixpoint depth of a variable in a393

formula. Given a formula φ and variable x, we let fd(x, φ), the fixpoint depth of x in φ,394

denote the maximum number of fixpoint operators that one may meet on a path from395

the root of the syntax tree of φ to a free occurrence of x in φ, with fd(x, φ) = −∞396

if no such occurrence exists. Formally, we set fd(x, x) := 0, fd(x, y) := −∞ if x ̸= y,397

fd(x, φ0 ⊙ φ1) := max
(
fd(x, φ0), fd(x, φ1)

)
, fd(x,♡φ) := fd(x, φ), fd(x, ηx.φ) := −∞, and398

fd(x, ηy.φ) = 1 + fd(x, φ) if x ̸= y. Without proof we mention that, provided x ̸= y and ψ is399

free for y in φ:400

fd(x, φ[ψ/y]) = max
(
fd(x, φ), fd(y, φ) + fd(x, ψ)

)
.401

From this we immediately infer that402

fd(x, φ[ψ/y]) ≥ fd(y, φ) + fd(x, ψ), (3)403
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which shows that every substitution doubles the fixpoint depth of a variable and leads to the404

exponential bound in (1). More concretely one can show that for all k and i such that k > i405

it holds that406

fd(xk, βi) ≥ 2i (4)407

From this (1) follows because βn is a subformula of ξn. The statement (4) is shown by408

an induction over i, where in the inductive step one proves with an inner induction over409

j ∈ {i− 1, . . . , 0} that fd(xk, αi,j) ≥ 2i−1 + · · · + 2j . We leave the details to the reader. ◀410

6 Standard formulas and parity formulas411

In this section we show how to move back and forth between standard µ-calculus formulas412

and parity formulas, in such a way that the closure-size of the standard formula corresponds413

linearly to the size of the parity formula and the alternation depth is preserved.414

From standard formulas to parity formulas415

Our main theorem states that for an arbitrary tidy formula, we can find an equivalent parity416

formula that is based on the formula’s closure graph, and has an index which is bounded by417

the alternation depth of the formula.418

▶ Remark 11. To stress our point that our results apply to atas and hess too, suppose that419

we want to base an ata Aξ on the closure set of a formula ξ, or, for the sake of a perspicuous420

definition, on the set A := {φ̂ | φ ∈ Clos(ξ)}. It is clear how to define the transition map ∆:421

we simply put ∆(φ̂) := φ if φ is atomic, ∆(φ̂⊙ ψ) := φ̂⊙ ψ̂ (for ⊙ ∈ {∧,∨}), ∆(♡̂φ) := ♡φ̂422

(for ♡ ∈ {3,2}), and ∆(η̂x.φ) := ̂φ[ηx.φ/x] (for η ∈ {µ, ν}). What is not obvious, however,423

is how to define the priority map on the set A (unless ξ is clean); this is exactly the issue we424

address here.425

▶ Theorem 12. There is a construction transforming an arbitrary tidy formula ξ ∈ µML into426

an equivalent parity formula Gξ, which is based on the closure graph of ξ, so that |Gξ| = |ξ|c427

and ind(Gξ) ≤ ad(ξ).428

The formula Gξ = (V,E,L,Ω, vI) is defined such that (V,E) is the closure graph of ξ, vI = ξ429

and L is the labelling that maps a literal to itself, a boolean or modal formula to its main430

connective and a fixpoint formula to ϵ. Clearly this guarantees |Gξ| = |ξ|c. The main431

difficulty is in defining the priority map Ω on Clos(ξ) such that Gξ is equivalent to ξ and432

ind(Gξ) ≤ ad(ξ), without assuming that ξ is clean.433

The definition of Ω is such that it assigns priorities to the fixpoint formulas in the closure434

of ξ. Because every cycle in the trace relation needs to pass over at least one fixpoint formula435

this makes sure that condition 2) of Definition 3 is satisfied by Gξ. In fact we can take Ω to436

be the restriction of a global priority map Ωg, which uniformly assigns a priority to every437

tidy fixpoint formula in µML. The function Ωg itself is defined cluster-wise from a strict438

partial ordering <C over the set of all tidy fixpoint formulas. To define <C we make use of439

the following notion of a free subformula.440

▶ Definition 13. Let φ and ψ be µ-calculus formulas. We say that φ is a free subformula of441

ψ, notation: φ Pf ψ, if ψ = ψ′[φ/x] for some formula ψ′ such that x ∈ FV (ψ′) and φ is442

free for x in ψ′.443
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The following is a useful characterisation of the free subformula relation (see [15] for a proof):444

φ Pf ψ iff φ ∈ Sfor(ψ) ∩ Clos(ψ).445

▶ Definition 14. We let ≡C denote the equivalence relation generated by the relation →C ,446

in the sense that: φ ≡C ψ if φ↠C ψ and ψ ↠C φ. We will refer to the equivalence classes447

of ≡C as (closure) clusters, and denote the cluster of a formula φ as C(φ).448

We define the closure priority relation ⊑C on fixpoint formulas by putting φ ⊑C ψ449

precisely if ψ ↠ψ
C φ, where ↠ψ

C is the relation given by ρ ↠ψ
C σ if there is a trace ρ =450

χ0 →C χ1 →C · · · →C χn = σ such that ψ Pf χi, for every i ∈ [0, .., n]. We write φ <C ψ451

if φ ⊑C ψ and ψ ̸⊑C φ.452

Using <C we can define the priority of a fixpoint formula as follows:453

▶ Definition 15. An alternating <C -chain of length n is a sequence (ηixi.χi)i∈[1,..,n] of tidy454

fixpoint formulas such that ηixi.χi <C ηi+1xi+1.χi+1 and ηi+1 = ηi for all i ∈ [0, .., n− 1].455

We say that such a chain starts at η1x1.χ1 and leads up to ηnxn.χn.456

Given a tidy fixpoint formula ξ, we let h↑(ξ) and h↓(ξ) denote the maximal length of any457

alternating <C-chain starting at, respectively leading up to, ξ. Given a closure cluster D, we458

let cd(D) denote the maximal length of an alternating <C-chain in D.459

The global priority function Ωg : µMLt → ω is defined cluster-wise, as follows. Take an460

arbitrary tidy fixpoint formula ηy.φ, and define461

Ωg(ηy.φ) :=
{

cd(C(ψ)) − h↑(ψ)) if cd(C(ψ) − h↑(ψ)) has parity η(
cd(C(ψ)) − h↑(ψ)

)
+ 1 if cd(C(ψ)) − h↑(ψ)) has parity η,

462

where we recall that we associate µ and ν with odd and even parity, respectively. If ψ is not463

of the form ηy.φ, we leave Ωg(ψ) undefined.464

Finally we define the priority function Ω of the parity formula Gξ to be Ω := Ωg ↾Clos(ξ) .465

▶ Remark 16. The definition of the priority map Ωg and of the priority order <C on which466

it is based, may look overly complicated. In fact, simpler definitions would suffice if we are467

only after the equivalence of ξ with Gξ and we do not need an exact match of index and468

alternation depth.469

In particular, we could have introduced an alternative priority order <′
C by putting470

φ <′
C ψ if φ ≡C ψ and ψ ◁f φ. This definition of <′

C is similar to the definition of a valid471

thread in [3]. If we would base a priority map Ω′
g on <′

C instead of on <C , then we could472

prove the equivalence of any tidy formula ξ with the associated parity formula G′
ξ that is473

just like G but uses Ω′
g as its priority map. However, we would not be able to prove that the474

index of G′
ξ is bounded by the alternation depth of ξ.475

To see this, consider the following formula:

αx := νx.
(
(µy.x ∧ y) ∨ νz.(z ∧ µy.x ∧ y)

)
.

We leave it for the reader to verify that this formula has
alternation depth two, and that its closure graph looks as
in the picture to the right (where we only indicate the main
connective of the formulas):

νx

∨

νz

∧

µy

∧476

Let αy and αz be the other two fixpoint formulas in the cluster of αx, that is, let477

αy := µy.αx ∧ y and αz := νz.z ∧ αy. These formulas correspond to the nodes in the graph478

that are labelled µy and νz, respectively. Now observe that we have αx ◁f αy ◁f αz, so that479
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this cluster has an alternating <′
C-chain of length three: αz <′

C αy <′
C αx. Note however,480

that any trace from αy to αz must pass through αx, the <C -maximal element of the cluster.481

In particular, we do not have αz <C αy, so that there is no <C-chain of length three in the482

cluster.483

A different kind of simplification of the global priority map would be to define484

Ω′′
g (ψ) :=

{
h↓(ψ) if h↓(ψ) has parity η
h↓(ψ) − 1 if h↓(ψ) has parity η. (5)485

Using this definition for a priority map Ω′′
g , we would again obtain the equivalence of ξ and486

the resulting parity formula G′′
ξ := (Cξ,Ω′′

g ↾Clos(ξ) ). In addition, we would achieve that the487

index of the parity formula G′′
ξ satisfies ind(G′′

ξ ) ≤ ad(ξ) + 1. However, the above formula488

αx would be an example of a formula ξ where ind(G′′
ξ ) exceeds ad(ξ): We leave it for the489

reader to verify that we would get Ω′′
g (αz) = 0, Ω′′

g (αy) = 1 and Ω′′
g (αx) = 2, implying that490

ind(G′′
ξ ) = 3.491

With our definition of the priority map Ωg, we find the same values for αy and αx as492

with Ω′′
g , but we obtain Ωg(αz) = 2, implying that ind(Gx) = 2 = ad(ξ) as required.493

In our technical report [15] we prove in detail that Gξ is in fact equivalent to ξ and494

that ind(Gξ) ≤ ad(ξ). The proof of the equivalence proceeds by induction on the length495

of ξ, where we use the strengthened inductive hypothesis that each formula φ ∈ Clos(ξ) is496

equivalent to Gξ⟨φ⟩ (that is, the version of G where we take φ as the initial state). In the497

crucial case of the inductive step we have ξ = ηx.χ and because of our strengthened inductive498

hypothesis we can assume that ξ /∈ Clos(χ). We then apply the inductive hypothesis to the499

tidy variant χ[x′/x] of χ. The claim follows from a comparison of the evaluation games for500

Gξ with the evaluation games for Gχ[x′/x]. For this we need the following proposition:501

▶ Proposition 17. Let ξ = ηx.χ be a tidy fixpoint formula such that x ∈ FV (χ) and502

ξ /∈ Clos(χ). Let χ′ := χ[x′/x] for some fresh variable x′. Then χ′ is tidy and we have:503

1. the substitution ξ/x′ is a bijection between Clos(χ′) and Clos(ξ).504

Let φ,ψ ∈ Clos(χ′). Then we have505

2. if φ ̸= x′, then φ →C ψ iff φ[ξ/x′] →C ψ[ξ/x′] and LC(φ) = LC(φ[ξ/x′]);506

3. if x′ ∈ FV (φ) then φ Pf ψ iff φ[ξ/x′] Pf ψ[ξ/x′];507

4. if φ and ψ are fixpoint formulas then ψ ⊑C φ iff ψ[ξ/x′] ⊑C φ[ξ/x′];508

5. if (φn)n∈ω is an infinite trace through Clos(χ′), then (φn)n∈ω has the same winner as509

(φn[ξ/x′])n∈ω.510

The crucial step in proving that ind(Gξ) ≤ ad(ξ) is to establish a link between the511

alternation depth of ξ and the length of alternating <C-chains in the closure graph of512

ξ. This is done by the following proposition, which can be seen as giving an alternative513

characterisation of the alternation depth of a formula. With η ∈ {µ, ν}, we let cdη(ξ) denote514

the maximal length of an alternating <C-chain in Clos(ξ) that leads up to an η-formula.515

▶ Proposition 18. For any tidy formula ξ and η ∈ {µ, ν}, we have516

cdη(ξ) ≤ n iff ξ ∈ Θη
n. (6)517

Hence the alternation depth of ξ is equal to the length of its longest alternating <C-chain.518
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The main challenge in proving Proposition 18 is the direction from right to left, and more519

specifically the case of the definition of alternation depth that concerns the closure of Θη
n520

under substitutions. Here we carefully analyse how the alternating <C-chains in C(ψ[ξ/x])521

relate to the ones in C(ψ). For the details, which are fairly complex, we refer to our technical522

report [15]. Here we just state the crucial proposition that establishes this relation.523

▶ Proposition 19. Let ξ and χ be formulas such that ξ is free for x in χ, ξ ̸Pf χ, and524

x ̸∈ FV (ξ). Furthermore, let ψ ∈ Clos(χ) be such that ψ[ξ/x] /∈ Clos(χ) ∪ Clos(ξ). Then525

1. the substitution ξ/x : C(ψ) → C(ψ[ξ/x]) is a bijection between C(ψ) and C(ψ[ξ/x]).526

Let φ0, φ1 ∈ C(ψ). Then we have527

2. φ0 →C φ1 iff φ0[ξ/x] →C φ1[ξ/x] and LC(φ0) = LC(φ0[ξ/x]);528

3. φ0 Pf φ1 iff φ0[ξ/x] Pf φ1[ξ/x];529

4. h↓(φ0) = h↓(φ0[ξ/x]), if φ0 is a fixpoint formula.530

From parity formulas to standard formulas531

The construction of an equivalent µ-calculus formula from a parity formula is well known,532

see for instance [17, 20]. The following theorem provides an analysis on how it behaves in533

terms of closure size and alternation depth. Given a parity formula G, we let G⟨v⟩ denote534

its variant that takes v as its initial state.535

▶ Theorem 20. For any parity formula G = (V,E,L,Ω, vI) there is a map trG : V → µML536

such that, for every v ∈ V :537

1. G⟨v⟩ ≡ trG(v);538

2. |trG(v)|c ≤ 2 · |G|;539

3. ad(trG(v)) ≤ ind(G).540

The details of the definition of trG and the proofs of items 1–3 can be found in our541

technical report [15]. Here, we illustrate the basic idea behind the construction by considering542

the simplified case where the priority map Ω is injective.8 The definition of trG proceeds by543

an induction on the lexicographic order over the pairs of numbers (|Dom(Ω)|, |G|), and we544

allow ourselves to be sloppy in considering structures consisting of parity formulas without545

initial vertex. Let T be a top cluster of G, that is, the states in T are not reachable from546

any state outside T . We make the following case distinction:547

Case 1: T is degenerate. In this case we have T = {v} for some v ̸∈ Ran(E). Let G′ be the548

structure we obtain from G by removing v from V . We may apply the induction hypothesis549

to G′ because it is strictly smaller than G, while having no more elements in the domain of550

the priority map. We define trG(u) := trG⟨u⟩(u) for u ̸= v, while for v we set define trG(v)551

by connecting the formulas trG⟨u⟩(u) for u ∈ E(v) with L(v) in the obvious way.552

Case 2: T is non-degenerate. In this case we have T ∩ Dom(Ω) ̸= ∅; let m ∈ T be the state553

in T of maximal priority, which is unique because of our assumption that Ω is injective.554

For the induction we then consider a fresh propositional variable pm and define G− =555

(V −, E−, L−,Ω−, vI) as the parity formula over Q ∪ {pm}, given by556

V − := V ∪ {m∗}
E− := {(v, x) | (v, x) ∈ E, x ̸= m} ∪ {(v,m∗) | (v,m) ∈ E}
Ω− := Ω↾V \{m} ,

557

8 In fact, it is not hard to see that by shifting priorities we can reduce the general case to this.
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while its labelling L− is defined by putting558

L−(v) :=
{
L(v) if v ∈ V

pm if v = m∗.
559

Since |Dom(Ω−)| < |Dom(Ω)|, inductively we have a map trG− : V − → µML(Q ∪ {pm}). Let560

η be the parity of m and define trG as561

trG(m) := ηpm.trG−(m)
trG(v) := trG−(v)[trG(m)/pm] for v ∈ V.

562

The key claim that entails item 2 of Theorem 20 is that563

|Clos(G)| ≤ |G| + |Dom(Ω)|,564

where Clos(G) :=
⋃ {

Clos(trG(v)) | v ∈ V
}

. This claim can be proved by the same induction565

as is used in the definition of trG: The point is to treat the closures of all the translations566

for vertices in G in parallel. The inductive case for non-degenerate clusters then follows with567

the observation that Clos(G) ⊆ {φ[trG(m)/pm] | φ ∈ Clos(G−)}.568

7 Conclusion569

This paper contributes to the theory of the modal µ-calculus by studying in detail some570

representations that are commonly used in order to prove complexity-theoretic results on571

problems such as model checking or satisfiability. We introduced the notion of a parity572

formula as a natural graph-based structure for representing formulas, and, building on work by573

Bruse, Friedmann & Lange [6] we focused on defining succinct parity formula representation574

on the closure graph of a standard formula. We showed in Proposition 10 that the renaming575

of bound variables can cause an exponential blow-up if the target formula is required to be576

clean. To realise the optimal upper complexity bound of model checking for all µ-calculus577

formulas, as our main contribution, Theorem 12 provides a construction of a parity formula578

that is based on the closure graph of a given formula, preserves its alternation-depth but579

does not assume the input formula to be clean.580

There is a lot more to say about parity formulas as graph-based representations of581

µ-calculus formulas, but here we confine ourselves to the following.582

Our example in Section 5 shows that closure size is not invariant under alphabetical583

equivalence. This matter could be investigated more thoroughly — here are some pertinent584

questions. Can we compute alphabetical variants of minimal closure size? If we make the585

reasonable assumption that alphabetical variants should be identified, then we should define586

the size of a formula as the size of its closure, up to alpha-equivalence; but can we base a587

parity formula on the quotient of the closure set under α-equivalence? Some answers to these588

questions can be found in our technical report [15].589

Second, we used parity formulas here as a means to understand complexity-theoretic590

results pertaining to the modal µ-calculus, but it could be interesting to study these structures591

in their own right. A natural first question is to find a good notion of a morphism or an592

equivalence between parity formulas. One might then for instance investigate whether Kozen’s593

expansion map [14] is a morphism from the parity formula based on the subformula dag to the594

parity formula on the closure. Furthermore, because parity formulas are representations of595

µ-calculus formulas one might also take a more logical perspective, and develop, for instance,596

their model theory or proof theory.597
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